This paper presents an educational experiment that merges art and science to deepen landscape architecture students' comprehension of scientific data. It explores tools and methodologies aimed at fostering more intuitive insights into data, bridging both analytical and artistic readings and expression. The study investigates techniques for representing landscapes and vegetation vitality using point clouds and vegetation indices, examining methodologies to stimulate the emergence of novel forms and morphologies in landscape architecture in artistic expressive ways. Through the analysis of airborne LiDAR data and utilization of near-infrared signatures, such as NDVI, the paper illustrates how invisible data can enhance vegetation assessment. Additionally, it evaluates the application of node-based visual programming, particularly Geometry Nodes in Blender, as an intuitive interface for handling scientific data, offering an alternative to Grasshopper in digital landscape architecture education.
Autor / Author: | Ihle, Marc-Eduard; Wichmann, Volker |
Institution / Institution: | UiT The Arctic University of Norway, Tromsø/Norway; Laserdata GmbH, Innsbruck/Austria |
Seitenzahl / Pages: | 14 |
Sprache / Language: | Englisch |
Veröffentlichung / Publication: | JoDLA – Journal of Digital Landscape Architecture, 9-2024 |
Tagung / Conference: | Digital Landscape Architecture 2024 – New Trajectories in Computational Urban Landscapes and Ecology |
Veranstaltungsort, -datum / Venue, Date: | Vienna University of Technology, Austria 05-06-24 - 07-06-24 |
Schlüsselwörter (de): | |
Keywords (en): | Point clouds, node-based programming, Blender, vegetation indices, NDVI |
Paper review type: | Invited contribution |
DOI: | doi:10.14627/537752024 |
Diese Website nutzt Cookies, um ihre Dienste anbieten zu können und Zugriffe zu analysieren. Dabei ist uns der Datenschutz sehr wichtig.
Legen Sie hier Ihre Cookie-Einstellungen fest. Sie können Sie jederzeit auf der Seite Cookie-Informationen ändern.