The integration of data science, machine learning, and artificial intelligence in landscape architecture, urban studies and design promises transformative impacts on cities. While acknowledging that urban complexities transcend data, the concepts of datafication and dataism emphasize the potential to sample, model, and predict urban phenomena through data. This study explores the synergy of digital visualization in collaboration. A structured framework, rooted in the multidimensional collaboration model and guided by theories, elucidates dimensions like Governance, Administration, Autonomy, Mutuality, Norms, and Equality. An illustration of qualitative research prepared for a second phase quantitative research complements the framework, aiming to discover indicators to assess the impact of data visualization on collaboration formation. This study contributes to structuring the framework to examine the symbiotic relationship between data visualization, collaboration, and decision-making, propelling transformative landscape architecture and urban data governance.
Autor / Author: | Lin, Chien-Yu |
Institution / Institution: | SUNY College of Environmental Science and Forestry, Syracuse/USA |
Seitenzahl / Pages: | 12 |
Sprache / Language: | Englisch |
Veröffentlichung / Publication: | JoDLA – Journal of Digital Landscape Architecture, 9-2024 |
Tagung / Conference: | Digital Landscape Architecture 2024 – New Trajectories in Computational Urban Landscapes and Ecology |
Veranstaltungsort, -datum / Venue, Date: | Vienna University of Technology, Austria 05-06-24 - 07-06-24 |
Schlüsselwörter (de): | |
Keywords (en): | Digital visualization, framework, collaboration, decision-making, communication, interaction |
Paper review type: | Full Paper Review |
DOI: | doi:10.14627/537752038 |
Diese Website nutzt Cookies, um ihre Dienste anbieten zu können und Zugriffe zu analysieren. Dabei ist uns der Datenschutz sehr wichtig.
Legen Sie hier Ihre Cookie-Einstellungen fest. Sie können Sie jederzeit auf der Seite Cookie-Informationen ändern.