
Digital twins of urban trees require sufficient 3D model and simulation functionality for growth and ecosystem service estimation. To achieve this level of functionality, the author proposed a workflow utilizing terrestrial laser scanning to generate the point clouds of individual trees. Based on the point clouds, by utilizing convex hull and α-hull, shape control parameters were measured and extracted and used to create Cescatti hulls for selected trees’ parametric crown models. Tree skeletons were extracted from point clouds and reconstructed into quantitative structure models. Both the crown models and tree skeletons were used to calculate the above-ground biomass of the trees and their sequestered carbon amounts. Allometric equations and procedural algorithms were then applied to simulate and predict the growth and biomass changes. The outcome of the models and the results’ prediction and estimation indicated that the proposed workflow was sufficient to offer a promising starting point for achieving the functionality of digital twins.
Autor / Author: | Guo, Yong; Luka, Andreas; Wei, Yunqi |
Institution / Institution: | School of Architecture, Tsinghua University/China; Next Generation Landscape Architecture Research Center/China; School of Landscape Architecture, Beijing Forestry University/China |
Seitenzahl / Pages: | 11 |
Sprache / Language: | Englisch |
Veröffentlichung / Publication: | JoDLA – Journal of Digital Landscape Architecture, 7-2022 |
Tagung / Conference: | Digital Landscape Architecture 2022 – Hybrid Landscapes |
Veranstaltungsort, -datum / Venue, Date: | Harvard University, Cambridge Mass, USA 09-06-22 - 10-06-22 |
Schlüsselwörter (de): | |
Keywords (en): | Existing urban tree, digital twins, point clouds, hull model, simulation |
Paper review type: | Full Paper Review |
DOI: | doi:10.14627/537724021 |
Diese Website nutzt Cookies, um ihre Dienste anbieten zu können und Zugriffe zu analysieren. Dabei ist uns der Datenschutz sehr wichtig.
Legen Sie hier Ihre Cookie-Einstellungen fest. Sie können Sie jederzeit auf der Seite Cookie-Informationen ändern.