
Dynamic eye tracking in 3D spaces provides a promising method for understanding human perception and judgment of landscape qualities. Studies applying this technology to outdoor landscapes remain scarce. This experimental study combines outdoor eye-tracking technology with artificial intelligence (computer vision) to represent, visualize, and interpret human observational patterns in a rehabilitated agricultural landscape. It examines what individuals observe during free-viewing of an outdoor environment and how these observations relate to landscape elements. Findings reveal consistent patterns (interest in mid-ground, water features) that align with established landscape theories and highlights phenomena requiring further investigation to enhance the understanding of the relationship between design theories and observational behavior.
Autor / Author: | Chamberlain, Brent; Evans, David; Schalbetter, Laura; Kiefer, Peter; Grêt-Regamey, Adrienne; Wissen Hayek, Ulrike |
Institution / Institution: | Utah State University, Utah/USA; Utah State University, Utah/USA; ETH Zurich, Zurich/Switzerland; ETH Zurich, Zurich/Switzerland; ETH Zurich, Zurich/Switzerland; ETH Zurich, Zurich/Switzerland |
Seitenzahl / Pages: | 8 |
Sprache / Language: | Englisch |
Veröffentlichung / Publication: | JoDLA – Journal of Digital Landscape Architecture, 10-2025 |
Tagung / Conference: | Digital Landscape Architecture 2025 – Collaboration |
Veranstaltungsort, -datum / Venue, Date: | Dessau Campus of Anhalt University, Germany 04-06-25 - 07-06-25 |
Schlüsselwörter (de): | |
Keywords (en): | Outdoor eye tracking experiment, in-situ study, rural environment, gaze patterns, artificial intelligence, computer vision |
Paper review type: | Full Paper Review |
DOI: | doi:10.14627/537754042 |
Diese Website nutzt Cookies, um ihre Dienste anbieten zu können und Zugriffe zu analysieren. Dabei ist uns der Datenschutz sehr wichtig.
Legen Sie hier Ihre Cookie-Einstellungen fest. Sie können Sie jederzeit auf der Seite Cookie-Informationen ändern.