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Bridges are one of the most important elements in the worldwide traffic infrastructure. Therefore, they 
require regular inspection and maintenance. In Germany, for instance, many bridges are older than 
50 years, which means they need special treatment to keep them in service. One very promising concept 
for optimizing the maintenance of bridges is BIM or a Digital Twin.
An essential basis of BIM as well as Digital Twins are geometric-semantic models. However, due to the 
age of many bridges, there are often no digital models available. That’s why there is an increasing demand 
for workflows for the automated creation of geometric-semantic models of existing bridges. This paper 
presents the general workflow for automated generation for Digital Twins. This literature review starts 
with an overview of different sensors and data acquisition techniques. Afterwards, different methods 
for data pre-processing like denoising and voxelization will be discussed. The main part of the literature 
review shows different AI methods for enriching point clouds with semantic information and extracting the 
contained geometry. Additionally, the current challenges within this workflow are shown and an outlook 
for future research is suggested.
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Brücken sind wesentliche Verkehrsinfrastrukturbauwerke, die regelmäßig inspiziert und gewartet werden 
müssen. In Deutschland sind viele Brücken älter als 50 Jahre, was zur Folge hat, dass sie einer beson-
deren Behandlung bedürfen, um sie in Betrieb zu halten. Als vielversprechendes Konzept zur Optimierung 
der Erhaltung der Verkehrsinfrastruktur werden BIM und Digitale Zwillinge gesehen. Eine wesentliche 
Grundlage von BIM wie auch von Digitalen Zwillingen sind geometrisch-semantische Bauwerksmodelle. 
Aufgrund des Alters vieler Brücken sind jedoch oft keine digitalen Modelle vorhanden. Deshalb besteht 
ein zunehmender Bedarf an Workflows zur automatisierten Erstellung von geometrisch-semantischen 
As-is-Modellen von Brücken. In diesem Beitrag wird ein Überblick zur automatisierten Generierung von 
Bestandsmodellen vorgestellt. Nach einer Einführung in geeignete Erfassungssensorik und -techniken 
werden zunächst unterschiedliche Methoden zur Datenvorverarbeitung diskutiert. Im Hauptteil werden 
verschiedene KI-Methoden zur Anreicherung von Punktwolken mit semantischen Informationen und zur 
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Extraktion der enthaltenen Geometrie behandelt. Zusätzlich werden die aktuellen Herausforderungen 
innerhalb dieses Workflows aufgezeigt und ein Ausblick auf zukünftige Forschung gegeben.

Schlüsselwörter: Brückeninfrastruktur, Scan2BIM, Reality Capture, Datenfusion, Semantische Segmentierung, 
 Automatisierte Modellierung, Digitale Zwillinge, BIM

1 INTRODUCTION

Bridges are key elements of efficient transport networks. To keep 
bridge structures in service, systematic bridge maintenance is car-
ried out as a process. This process starts with the collection of data 
about the condition state of the bridges all the way through the 
 execution of well-informed maintenance decisions about the bridge 
inventory / Haardt & Holst 2008/. The German bridge inventory of 
federal highways is composed of more than 40 000 bridges, 4.6 % 
of which are categorized as having an inadequate or worse condition 
according to the March 2023 report from the Federal Highway Re-
search Institute (BASt) / BASt 2023/. The categorization of the con-
dition of the bridges is the result of observations from site inspec-
tions, where findings about the bridge state are documented with 
sketches and photographs / BVBS 2013/. This process may be influ-
enced by the subjective perception of the inspector / Moore et al. 
2001/, / Moufti et al. 2014/. Moreover, although a significant propor-
tion of bridges remains in satisfactory or still sufficient condition, it 
is still crucial to consistently monitor and inspect these structures to 
detect potential issues at an early stage / Office of Transportation 
Maintenance 2008/. In this context, the Scan-to-BIM or Scan2BIM 
process can assist in the timely generation of high-quality data to 
support maintenance decision making. Scan2BIM is the process of 
creating semantically rich three-dimensional (3D) digital models, so 
called BIM models, from reality capture data / Bosché et al. 2015/.

Remote sensing techniques based on laser scanning or photo-
grammetry are used to map the current outer surface geometry of 
built structures in a digital format. One sought-after attribute in 
Scan2BIM for bridges applications is the ability to swiftly acquire 
data with ease and flexibility. This is particularly valuable because 
bridge structures are typically large and can include hard-to-reach 
areas. Moreover, data capture may be affected by traffic. The collected 
digital data is further processed to produce a set of 3D coordinate 
points. This set of points is usually referred to as a 3D point cloud, 
and it will often consist of many millions of points. In addition to point 
coordinates, data acquisition techniques may also provide attributes 
such as RGB color or brightness values, both of which may help in 
the condition assessment of bridges in the later stages 
of the Scan2BIM process. While remote sensing tech-
niques only capture visible surfaces further details 
about non-visible building elements can be inferred by 
automatically integrating “as-planned” data from avail-
able legacy construction drawings into the BIM model 
or by acquiring current “as-is” data through non-de-
structive testing methods.

Building Information Modelling (BIM) evolved from a 
tool to design to a collaborative workflow integrating 
geometrical, topological and functional information 
stored in a consistent database / Weygant 2011/, / NIBS 

2014/, / Azhar et al. 2012/. This rich information repository is acces-
sible and manageable by all stakeholders throughout the whole life 
cycle of an asset. An essential output of the BIM method is a seman-
tically-rich 3D and object-oriented digital model, so called BIM 
model / Sacks et al. 2008/. Depending on the life cycle phase this 
model can be an as-planned/as-designed, as-built or as-is model. 
Especially, the use of BIM in the operational phase requires as-is 
models, just like Digital Twins (DTs) that are currently being inten-
sively discussed. DTs are proposed as a coupling of a real asset and 
its digital representation, where changes in state of one of the rep-
resentations are communicated and trigger responses into the other 
/ Oliver et al. 2018/. For DTs, BIM models that reflect the actual ge-
ometric-semantic state are an important basis which are combined 
with other models (e. g. numerical models, sensor models) within the 
Digital Twin.

This article describes a methodical approach to the organisation 
of the digital twin creation process which consists of several steps. 
These steps are distributed among the present sections. We first 
describe the available data sources (Section 2) and how they can be 
pre-processed (Section 3). To enrich the data, we review several 
techniques for acquiring semantic understanding (Section 4). We will 
present unsupervised and supervised learning methods, for com-
pleteness. Knowing point relations allows the extraction of geometric 
properties (Section 5) and the creation of digital models (Section 6). 
Finally, we present state-of-the-art implementations utilizing the 
steps described (Section 7). Fig. 1  provides an overview of the se-
quential steps and sections.

2 DATA SOURCES

Optical 3D measurement techniques are a powerful tool for the ac-
quisition of 3D object geometries with high spatial resolution. Among 
manifold techniques, the term comprises photogrammetric multi- 
view stereo techniques as well as terrestrial laser scanning. These 

Fig. 1 | Flowchart representation of the Scan2BIM workflow reviewed in this study. Numbers 
in parenthesis refer to the corresponding sections within this study where further details are 
found.
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two techniques are predestined for complete and accurate data 
capture of complex objects such as bridges. They may be applied in 
a stationary terrestrial mode as well as in terrestrial mobile modes 
or on a UAV (unattended aerial vehicle). Herein, 3D point clouds are 
an important result of optical 3D measurement techniques, describ-
ing object geometry with a very large number of (quasi-randomly 
distributed) 3D points. Such a 3D point cloud will mostly not be the 
final result, but form a basis for change analysis or to derive vector-
ized geometry data to be used for applications such as Digital Twins. 
Multi-temporal 3D point clouds also form a basis for change moni-
toring.

2.1 Static and Mobile Laser Scanning

Laser scanning (or LiDAR) techniques are based on laser distance 
measurement with a scanning device and can be subdivided into 
airborne and terrestrial laser scanning, with the latter further sec-
tioned in static and mobile modes. Airborne LiDAR using an airplane 
platform will deliver data which rarely exceed a point density of 20 
points/m2 (corresponding to a point spacing of 20 – 25 cm) which 
may for instance be sufficient to add bridges to 3D city models on 
the basis of LiDAR and cadastral data / Goebbels 2021/. The use of 
a light-weight laser scanning device on an UAV allows for much 
higher point densities due to lower flying heights. As airborne LiDAR 
instruments typically come with range measurement precision in the 
order of 1 – 2 cm, the use of differential Global Navigation Satellite 
System (GNSS) solutions is essential to provide platform position 
data with an appropriate accuracy. In / Gaspari et al. 2022/ an off-
the-shelf system consisting of a DJI Matrice 300 UAV equipped with 
Zenmuse L1 scanner is used to capture 3D data of a bridge and 
reported an accuracy of 5 – 10 cm, with some degradation caused 
by GNSS signal obstruction underneath the bridge.

Terrestrial laser scanning (TLS) instruments typically come with a 
distance measurement precision down to a few millimetres and a 
maximum range of several hundred meters, which makes them very 
suitable for bridge data acquisition. TLS data for a bridge information 
model are used by / Mohammadi et al. 2022/, generating CAD mod-
els by a slicing technique and achieving accuracies in the millimetre 

range. As integrated devices, there are also total stations (see Sec-
tion 2.4) with integrated cameras and scanning devices. TLS data 
capture comes with some effort due to the necessity of tripod-based 
data acquisition from many instrument positions, even though multi- 
view fusion is completely automated. Here, vehicle-based mobile 
laser scanning (MLS) systems may offer more efficient solutions. For 
instance / Lueangvilai & Chaisomphob 2022/ use a MLS system for 
annual inspection of a bridge on live traffic.

Even higher flexibility is offered by backpack-based personal laser 
scanning systems / Liang et al. 2014/. They often come with SLAM 
(simultaneous localization and mapping) techniques for the geomet-
ric registration of successive scans, which are based on the match-
ing of features in successive scans, often supported by IMU (inertial 
measurement unit), GNSS and possibly by camera measurements 
/ Karam et al. 2020/. Camera data can be used for both, SLAM 
solutions and the determination for 3D point cloud colour attributes. 
Personal Laser Scanning (PLS) systems may provide accuracies in 
the millimetre-range, slightly below the accuracy level obtained in 
static TLS. In / Gollob et al. 2020/ tripod-borne TLS and PLS are 
compared in forest inventory applications, which are also character-
ized by high complexity, showing the PLS data capture is 5.4 times 
faster. A combination of TLS, PLS and image-based for generating a 
3D model of a bridge to be enriched with inspection and load test 
data is shown by / Previtali et al. 2020/.

Regardless of the platform used, modern laser scanner systems 
generate very large data sets due to their very high point rates, up 
to several million points per second. Removing non-object points, 
reducing the amount of data and deriving the required geometries 
requires extensive post-processing. In order to reduce the interactive 
workload, intelligent methods are increasingly used, which are pre-
sented in Sections 3, 4 and 5.

2.2  Image-based 3D Object Data Capture 
Techniques

Photogrammetric data acquisition allows for almost arbitrary scaling 
of data acquisition devices, ranging from very lowcost devices such 
as single-chip computer cameras or amateur digital cameras to 

Fig. 2 | Dense colorized 3D point cloud (13 Mpts) of a bridge from UAV data and SfM processing / Mader et al. 2015/
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specialized high-resolution or high-speed cameras. Cameras may be 
used hand-held, on a tripod or on UAVs (Fig. 2 ). The fast 3D 
 reconstruction of a historic masonry bridge from low-cost UAV data 
is shown in / Pepe & Costantino 2021/, in / Tatsuro Yamane & Honda 
2022/ 3D models of a bridge are generated using SfM techniques 
and are used to geo-locate the damage that has been detected by a 
deep learning approach.

Panchromatic camera images are better suited for pure geometric 
measurement purposes, as they avoid colour pattern effects in the 
image data and come with a higher light sensitivity. Nevertheless, 
most image data used in photogrammetry is RGB imagery due to the 
nature of off-the-shelf cameras, providing RGB attributes for point 
cloud colorization and a basis for multi-spectral classification tech-
niques. Beyond RGB, other ranges of the electromagnetic spectrum 
allow for manifold analyses, for instance, NIR (near infrared) sensors 
for moss detection and pitting corrosion, or TIR (thermal infrared) 
sensors for humidity-induced damages. In / Mader et al. 2016/ a 
study on the potential of RGB, NIR and TIR cameras onboard a UAV 
for damage mapping on buildings and bridges is shown. Beyond 
multi-spectral information, / Isfort 2022/ show a study on the use of 
polarization cameras for the determination of concrete surface 
moisture.

Proper geometric and stochastic modeling is crucial to exploit the 
accuracy potential of cameras used as measurement devices 
/ Luhmann et al. 2016/. Subpixel accuracy image analysis tech-
niques allow for image space measurement accuracies down to the 
order of 0.02 – 0.05 pixels under good conditions. Translated into 
3D object space, this corresponds to an accuracy in the order of 
1 : 100 000 of object size. However, most cameras come with very 
significant systematic errors caused by the effects of camera optics, 
electronics, and mechanics. These errors will often be 1 – 2 orders 
of magnitude larger than image space measurement accuracy and 
need to be compensated using proper sensor modeling and simul-
taneous calibration techniques / Luhmann et al. 2016/. Only in pure 
2D monitoring tasks with a static camera, where points to be ob-
served only move over a few pixels in image space, camera calibra-
tion can be omitted. An application in a pilot study on 2D bridge 
deformation measurement, where even accuracies of less than 
0.01 pixel, corresponding to 1 : 200 000 of the largest object dimen-
sion and validated by inductive gauges, could be achieved by / Albert 
et al. 2002/.

2.3  Range Cameras and Mobile Devices

As a kind of hybrid between LiDAR devices and cameras, range 
images allow for the acquisition of panchromatic image data plus a 
distance value for each pixel, employing modulated LEDs and phase-
based time-of-flight measurement techniques / Oggier et al. 2004/. 
Unlike stereoscopic multi-camera systems, range cameras deliver 
depth information in real-time without the necessity of stereo-match-
ing, and unlike laser scanning, depth is determined for the whole 
scene simultaneously / Maas 2008/, however with a maximum range 
often limited to several meters and an accuracy rather in the order 
of a centimeter / Westfeld & Maas 2013/. Meanwhile, some high-end 
mobile phones also come with LiDAR sensors. In combination with 

the integrated GNSS, gyroscopes and accelerometers, this allows to 
use them as standalone devices for kinematic 3D data acquisition of 
complex scenes. The potential of several such devices, yielding an 
accuracy potential of a few centimeters under good conditions is 
examined by / Costantino et al. 2022/. Mobile device cameras may 
also be used for flexible stereo photogrammetric image data acqui-
sition, but come with considerable instabilities of their interior orien-
tation cameras, which require extra effort in calibration / Elias et al. 
2020/. Moreover, integrated AI-based techniques for image sharp-
ening may affect the measurement accuracy.

2.4  Total and Multi Stations

In addition to the area-based methods described above, single-point 
or hybrid methods are also used to generate 3D geometry data as a 
basis for BIM models. Tachymeters or total stations are well known 
from conventional surveying in construction. They enable the precise 
acquisition of geometry data in the form of discrete points. The 
general workflow of a total station-based data collection from a BIM 
perspective is shown in / Blankenbach 2018/. While in terrestrial 
laser scanning the required geometry data is extracted from a large 
amount of 3D points in the post-processing phase, in tachymetric 
surveying the geometric discretization of the object must be carried 
out prior to the survey, as the points required for the reconstruction 
are measured directly or indirectly. Data acquisition can be divided 
into three different methods. (i) the acquisition of 3D structure edges, 
(ii) the direct acquisition of sections, and (iii) 3D modeling. The third 
method is the most relevant for BIM data acquisition. Recent total 
stations are characterized by a high degree of digitalization. Integrat-
ed coaxial camera systems, target tracking and extensive on-board 
software are now standard features. These innovations are particu-
larly useful for measuring and documenting damaged areas for BIM 
model enrichment. In / Lienhart et al. 2017/ an approach for moni-
toring vibrations on bridges using an image-assisted total station is 
shown. Camera integration has the advantage of eliminating the 
need for prisms. In addition to modern total stations, there are also 
hybrid systems, i. e. high-performance total stations with additional 
3D scanning capability. In terms of pure point measurement rate, 
they are less efficient than current terrestrial laser scanners, but they 
are more accurate and can be easily stationed in an existing network 
of checkpoints. This is confirmed by / Fagandini et al. 2017/ in their 
study on the use of a multi-station in structural monitoring. In par-
ticular, the elimination of special targets for alignment and the high 
accuracy are seen as very positive.

2.5 2D Plans and Stock Data

An additional source of data for data capture of bridges may be 
digitized historic 2D plans. A drawback herein is in the fact that these 
plans will only deliver as-planned data. If multiple views are available, 
such plans may also be used for 3D reconstruction, either stand-
alone or in combination with 3D point clouds or vectorized data 
captured by laser scanning or stereo photogrammetry. A workflow 
for the generation of 3D models for BIM models of historical bridges 
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from 2D plans based on image processing for corner detection is 
described in / Poku-Agyemang & Reiterer 2023b/. An advantage of 
using plans in the generation of BIM models is in the fact, that they 
also contain details, that are inaccessible to laser scanning or 
 image-based data capture. Beyond as-built data acquisition, such 
plans may also support point cloud segmentation and classification 
tasks / Humblot-Renaux et al. 2023/.

3 DATA PRE-PROCESSING AND FUSION

Data pre-processing involves a range of techniques and operations 
that are applied to raw data before it is utilized for analysis or other 
purposes. We chose to name this step pre-processing since the al-
gorithms described in our workflow specifically serve this purpose. 
However, these algorithms can also be employed in later stages of 
the process. The objective of data pre-processing is to clean, con-
vert, and organize the data in a manner that is more suitable for 
subsequent analysis or processing steps. This encompasses the 
fusion of different data sources or various available point clouds. 
Ensuring high data quality is crucial as it profoundly affects the 
 dependability and accuracy of the findings.

3.1 Data Fusion

The complementarity of the above-mentioned optical 3D measure-
ment techniques favors the use of data fusion techniques. The data 
fusion process combines the different data sources to overcome the 
limitations of the individual 3D measurement techniques. For in-
stance, stereo imaging techniques will usually provide better accu-
racies in the lateral direction, while LiDAR techniques will be better 
in the radial direction. Moreover, different sensors will provide differ-
ent attributes to 3D points, such as RGB or thermal information. The 
data sources are transformed into the same reference system 
through the process of registration. There is a wide range of regis-
tration algorithms. These range from classical methods such as Iter-
ative Closest Point (ICP) / Besl & McKay 1992/ and its extensions 
which, for example, introduce the geometric features into the error 
function to achieve accurate regis-
tration / He et al. 2017/. Other pos-
sible registration algorithms use 
high- order graph matching / Zhang & 
Wang 2018/, Normal Distribution 
Transform / Biber & Straßer 2003/, 
/ Zaganidis et al. 2017/ or 3D deep 
learning / Ao et al. 2021/ to solve the 
registration problem. The registered 
point cloud can be additionally trans-
formed into a geodetic coordinate 
reference system using GNSS posi-
tions of keypoints within the point 
cloud / Otepka et al. 2013/. When 
fusing different data sources it is 
essential to do so, while maximizing 
the completeness of the resulting 

point cloud. Quantifying the level of completeness depending on the 
use case has been proposed in / Rebolj et al. 2017/. Furthermore, 
planning the point cloud acquisition positions and methods to max-
imize completeness has been the subject of multiple studies, where 
a comprehensive review can be found in / Aryan et al. 2021/.

In / Dabous & Feroz 2020/, a study is presented on the condition 
monitoring of concrete bridges, including the detection of rebar 
corrosion, delamination and cracking, integrating close-range pho-
togrammetry, terrestrial laser scanning, infrared thermography and 
ground-penetrating radar. Various sources, including different laser 
scanners and analog 2D plans, are utilized in / Poku-Agyemang et al. 
2023a/ to construct a comprehensive point cloud of a bridge, going 
beyond outer shell geometries.

3.2 Data Pre-processing

Before utilizing the point cloud, there exist various methods to 
pre-process it. A frequently utilized pre-processing technique in-
volves downsampling to decrease the number of data points. The two 
most commonly used techniques are random downsampling and 
voxel-grid downsampling. The former method is characterized by 
high speed and the ability to generate a point cloud with a fixed 
number of points. On the other hand, the latter technique produces 
a more uniform point cloud by utilizing a voxel grid with a constant 
voxel size and a single point per voxel.

To account for potential object or scene rotation in relation to a 
particular coordinate system, the process of axis alignment is used. 
Many computational geometry problems can be solved more effi-
ciently when dealing with axis-oriented objects, like axis-aligned 
rectangles or line segments /Martens & Blankenbach 2020/. These 
objects have a clear and simple structure that enables faster pro-
cessing. Axis alignment can be achieved with the use of PCA, as 
discussed in Section 5.1. The largest eigenvector of the matrix cor-
responds to the direction of the principal axes and can be utilized to 
rotate the object to align with the global axes.

Another crucial step is to identify and eliminate any outlier points. 
Outlier points, in this context refer to data points that deviate sig-
nificantly from the overall pattern or distribution and are attributed to 

Fig. 3 | Visualization of point clouds and different possible representations

(a) Point cloud with 10 cm voxel size (b) Voxel grid

(c) Octree with depth = 8 (d) Spherical projection
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environmental factors, measurement errors or, in the case of optical 
sensors, reflective or transparent surfaces. The Statistical Outlier 
Removal / Grubbs 1969/ method involves computing the mean and 
standard deviation of distances between every data point and its k 
nearest neighbors. Any points with distances exceeding a specific 
threshold are then removed. The Local Outlier Probabilities / Kriegel 
et al. 2009/ algorithm computes a density-based result for every 
data point based on the density of its k  nearest neighbors. Data 
points with significantly lower density than their neighbors are iden-
tified as outliers and eliminated. Both methods utilize the k  nearest 
neighbors, which are commonly approximated with a kd-tree for 
purposes of efficiency / Muja & Lowe 2009/. Another frequently uti-
lized method for detecting outliers is RANSAC, which will be further 
discussed in Section 5.3.

It is important to note that there are several ways to represent 
point clouds. Alternatively, instead of using the point cloud, which is 
essentially a set of points, the point cloud can be transformed into a 
3D grid of voxels. The point cloud can be projected onto a plane and 
displayed as a 2D image. Various representations are depicted in 
Fig. 3. Due to the variety of available representations, alternative 
algorithms may be utilized with significant benefits. Particularly in the 
context of 2D projection, these algorithms can be accelerated 
through the reduction of one dimension.

4 SEMANTIC SEGMENTATION

Semantic segmentation assigns a label to each pixel or point, indi-
cating the category, type or class of object to which it belongs. This 
labeling offers a thorough comprehension of the scene content, 
critically important in tasks such as autonomous driving, scene un-
derstanding, and object recognition. The deep understanding and 
interpretation of the visual scene that semantic segmentation de-
mands make it a challenging process. It entails the identification and 
differentiation of objects or regions within an image or point cloud 
that may differ in shape, size, orientation, and color. Another crucial 
point to consider is the differentiation between semantic segmenta-
tion and instance segmentation. While for the former, only a label 
needs to be assigned to each point showing its class, for the latter, 
it is necessary to distinguish between different objects belonging to 
the same class. The introduction of additional individual instances 
makes the whole process even 
more complex, and it is often 
divided into two steps. There-
fore, we will first describe se-
mantic segmentation and possi-
ble approaches to it, and finally, 
in Section 4.4, we will discuss 
the instantiation. There are mul-
tiple methods for accomplishing 
3D segmentation and often dif-
ferent representations, as de-
scribed in Section 3.2, are used. 
These different representation 
options result in different ap-
proaches to performing the seg-

mentation. While some of the methods described in this section are 
specific to bridge infrastructure, most are applied in the general 
context of point clouds. For an overview of their application to bridges 
we describe particular workflows in Section 7.

4.1 Unsupervised Rule-based Approaches

In rule-based approaches, the segmentation process is based on a set 
of predetermined conditions or thresholds. These conditions are often 
derived from empirical observations about the data being segmented 
or domain knowledge. The rules are designed to capture certain 
patterns, features or relationships which can either be used as input 
for supervised machine learning models or on its own to distinguish 
different objects or regions of interest in an unsupervised way.

4.1.1 Primitive Fitting for Segmentation

Although primitive fitting is mainly a technique for finding geometric 
shapes in point clouds, if the scene and objects of interest consist 
primarily of primitive shapes, it can also serve as a segmentation 
method. Therefore, in the following, we describe such use cases. 
Applications for geometric modeling are then discussed in Section 5. 
Primitive fitting involves approximating a geometric form, such as a 
plane, sphere, cylinder, or cone, to a group of 3D points in a point 
cloud. It frequently serves as the initial phase in object recognition 
and segmentation from point clouds. The objective is to recognize 
straight-forward geometric shapes that can symbolize the object and 
then exploit this information to extract the object from the point 
cloud. A standard way for object inlier determination are RANSAC-
based methods, which we will discuss in more detail in Section 5.3.

In / Maalek et al. 2019/ a framework is proposed for extracting 
primary structural components, which include columns, slabs, and 
rebars, from point clouds in regular rectangular reinforced concrete 
structures. Major bridge components are detected within point 
clouds in / Lu et al. 2019/. The deck assembly is separated from the 
pier assemblies using a slicing algorithm. Afterwards, the pier caps 
and girders are detected and segmented based on their surface 
normal, oriented bounding boxes, and density histograms. This ap-
proach achieves segmented and labeled point clusters in a top-down 
manner.

Fig. 4 | General semantic segmentation overview
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4.1.2  Clustering

Clustering algorithms, in general, are powerful tools in data analysis 
as they group similar data points into coherent clusters, revealing 
inherent structures in complex data sets. In the field of the analysis 
of 3D point clouds, clustering algorithms play a crucial role in 3D 
segmentation. By detecting points that share common geometric 
attributes such as proximity, orientation, curvature, or colour, clus-
tering algorithms identify points that correspond to specific compo-
nents, such as pillars, for instance. The resulting clusters represent 
underlying geometric classes, enabling the reconstruction of struc-
tural elements with increased detail. For the clustering of point 
clouds into meaningful parts many different algorithms are available, 
however, here we will only focus on a small selection of widely used 
algorithms, such as k-means, Density-based spatial clustering of 
applications with noise (DBSCAN), or region growing.

k -Means is a centroid-based clustering algorithm that divides a 
data set into k  distinct, non-overlapping clusters, see /  Mirkin 2005/. 
It starts by randomly selecting cluster centers and then assigns each 
data point to the nearest cluster center based on a chosen distance 
metric, e. g. the Euclidean distance. After assignment, the cluster 
centers are recalculated as the mean of the data points within each 
cluster. This process of assignment and center updating iterates 
until convergence. k -Means is widely used for point cloud segmen-
tation by partitioning points into clusters based on spatial proximity, 
making it effective for extracting geometric primitives like planar 
surfaces.

DBSCAN, proposed by / Ester et al. 1996/, is a density-based 
clustering algorithm that categorizes data points into clusters based 
on the point density and connectivity. It is particularly effective in 
handling point clouds with varying densities and irregularly shaped 
clusters, making it a valuable tool for 3D point cloud analysis in asset 
reconstruction and other scenarios. Two key parameters are defined: 
a parameter  that specifies the radius of a neighborhood with re-
spect to a core point and the minimum number of points minPts 
within a distance  to form a core point. DBSCAN starts with a core 
point and expands the cluster by connecting neighboring core points 
within the distance . Points that are not core points but fall within 
distance of a core point are assigned to the cluster as well. For 3D 
asset reconstruction, DBSCAN can reveal irregular structural com-
ponents such as pillars, railings, decorative elements, or other 
structural details that may not conform to standard shapes. 
/ Czerniawski et al. 2018/, for example, presents an approach for the 
extraction of planar objects using DBSCAN in a six dimensional 
clustering space. Region growing is a seed-based clustering algo-
rithm that iteratively expands clusters from seed points, see / Bali & 
Singh 2015/ for a general overview of region based clustering 
methods. It starts with a set of seed points and iteratively adds 
neighboring points that satisfy predefined similarity criteria. These 
criteria are often based on geometric features such as normal vec-
tors, curvature, colour, or spatial proximity. If a neighboring point 
meets the criteria, it is added to the cluster and the process contin-
ues. The growth of the region is stopped when no more points can 
be added to the cluster based on the chosen criteria. This algorithm 
is suitable for segmenting point clouds into coherent regions and 
thus for identifying planar surfaces, edges and other geometric 

features. Employing algorithms like k -means, DBSCAN, or region 
growing, the segmentation of point clouds into meaningful segments 
is facilitated and thus enabling accurate geometric extraction and 
asset reconstruction.

4.2 Classical Machine Learning

While the previous methods focused entirely on unsupervised 
 methods the following sections deal with methods which utilize 
 labeled datasets. This is the case if for each point in a point cloud 
x i ��­features a corresponding semantic class y i ��­classes is provid-
ed by an annotator. The goal of the machine learning model then 
becomes to learn a function which maps unseen examples to the 
observed semantic classes. Therefore, supervised methods have the 
benefit of not only providing segments of points with similar geo-
metric properties but also assigning these with a semantic label. In 
principle, supervised methods are divided into “classical” that require 
the prior manual feature extraction and “deep learning”, which au-
tomate feature extraction. In the following, we start by  describing 
classical approaches, while the subsequent Section 4.3 describes 
deep learning methods.

Due to their reliance on precomputed features, research in the 
semantic segmentation of point clouds has mainly focused on ex-
tracting rich feature sets which are able to efficiently describe the 
local geometry. Some of the information needed is already contained 
in the individual point and is often used without the need for further 
computation – this includes the absolute point height, color informa-
tion captured by cameras and signal intensity in the case of LiDAR. 
In / Mallet et al. 2011/ this is extended by fitting a parametric function 
to the full-waveform LiDAR data. In order to capture the geometric 
properties of surfaces and objects, the context surrounding indi vidual 
points becomes relevant. For this purpose the general workflow can 
be divided into 4 steps: 1) Neighborhood selection, 2) Feature ex-
traction, 3) Feature selection, 4) Supervised classification. The 
neighborhood is the set of points surrounding the point of interest 
which are going to be included in the computation and is mostly 
defined as either all points within a certain radius r  or a fixed num-
ber of the k-nearest neighbors. Based on these neighbors a descrip-
tion of the local geometry can then be either computed using covar-
iance-based features / Kawashima et al. 2012/, / Weinmann et al. 
2015/ or histogram-based features such as spinning images 
/ Johnson & Hebert 1999/, SHOT descriptors / Hutchison et al. 2010/, 
/ Xu et al. 2018/ and 2D-accumulation maps / Monnier et al. 2012/. 
Covariance-based features use statistical methods, described in 
Section 5.1, to capture geometrical characteristics of the neighbor-
hood, which are often perceived as interpretable qualities – e. g. 
planarity, linearity, sphericity, etc. Histogram-based features instead 
discretize the relative position and orientation / Hutchison et al. 2010/ 
of surrounding points in order to describe the pattern of the neigh-
borhood.

Covariance-based features are heavily dependent on the size of 
the neighborhood and a fixed radius may be sub-optimal for datasets 
with objects of various scales / Weinmann et al. 2015/. They propose 
an optimal neighborhood strategy which adapts its size based on the 
eigenentropy of mutually exclusive geometric features. The same 
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paper goes further to perform feature selection, resulting in run time 
reductions, as well as provide an overview of the performance of all 
typical classifiers on the resulting feature sets such as Random 
Forrest, Naive Bayes, K -Nearest Neighbor, Support Vector Machines, 
and others.

Even though information from neighbors is captured by the feature 
extraction step, the points are still treated individually by the classi-
fier which may result in noisy or erroneous segmentation maps. To 
circumvent this, statistical contextual models can take into account 
the relationships between points by modeling them as conditional 
probabilities – in / Niemeyer et al. 2017/ the predictive performance 
is improved by modeling mid and long-range relationships between 
points using Conditional Random Fields.

4.3 Deep Learning

Deep neural networks (deep learning) are currently the most prom-
inent supervised segmentation methods. A general overview of deep 
learning applied to point clouds can be found in / Guo et al. 2020/. 
The approaches can be divided into the above representations and 
fusion-based methods that use a combination of different representa-
tions. Fig. 5  illustrates the subdivision into the different representa-
tions and the corresponding approaches. 

4.3.1 Projection-based

An intuitive way of transferring the success of convolutional neural 
networks (CNNs) with images to point clouds is to view the point 
clouds as projections on a surface. This enables the use of already 
established 2D-CNNs architectures and multi-view feature fusion. 
The most common projections are the spherical and the bird’s eye 
view. The spherical view is often referred to as a depth image be-
cause the Cartesian coordinates of each point (X , Y, Z ) are trans-
formed into spherical coordinates (q, G, d ) and the angles are used 
as pixel positions holding the depth value d. / Milioto et al. 2019/, 
/ Cortinhal et al. 2020/ achieved quite remarkable results with this 
projection on the / Behley et al. 2019/ data. The bird’s eye view is a 
top-down perspective, similar to how the scene would appear if 
viewed from above, like a bird flying overhead. This view is created 

by projecting the 3D points onto a horizontal plane, effectively re-
moving depth or height information and preserving spatial relation-
ships only along the X and Y axes. In / Zhang et al. 2018/ an occu-
pancy grid is created and the gravitational axis serves as the feature 
channel. PolarNet / Zhang et al. 2020/ adopts the approach by using 
a polar grid instead of a Cartesian one. In addition to other possible 
projections, there is also the possibility of combining several viewing 
angles or even different projections / Gerdzhev et al. 2020/, / Alnaggar 
et al. 2020/. However, through the projection process, some of the 
spatial information is lost. Furthermore, the choice of projection 
planes may heavily influence recognition performance and occlusion 
in 3D may impede accuracy. One advantage, however, is their over-
all small parameter size and quick inference which makes them 
applicable for self-driving where latency is an issue.

4.3.2 Discretization-based

Some authors quantize the point clouds in discrete 3D voxel grid 
which allows the use of 3D convolutions but often leads to massive 
computational and memory costs due to many voxels being naturally 
empty. Some solutions exist that aim to mitigate this: e. g., by using 
sparse convolutions, where the kernel is only applied to occupied 
voxels / Graham et al. 2018/ or by dividing the scene into hierarchical 
partitions with octrees / Riegler et al. 2017/. The authors of / Zhu 
et al. 2020/ propose an alternative to the conventional voxel grid by 
introducing a 3D cylindrical partition. They utilize an asymmetric 3D 
convolution that focuses on improving the horizontal and vertical 
responses while aligning with the distribution of object points. Never-
theless, these designs may still suffer from some detail information 
loss depending on the choice of the voxel size.

4.3.3 Point-based

A rather successful approach has been the design of deep network 
architectures, that operate on continuous points directly. Those make 
use of permutation-invariant operators, such as shared multilayer 
perceptron (MLPs) and pooling to aggregate features over a set – 
PointNet / Qi et al. 2016/. Additionally, these also include a learned 
transformation that aligns point clouds to a canonical space, making 
the network transformation invariant. One drawback of the shared 

MLP approach is that they handle each point 
independently, which limits their capability to 
capture local features. The MLP method was 
developed further in PointNet++ / Qi et al. 2017/ 
to compute point-wise features by applying it 
recursively on small neighborhoods around 
sampled points, progressively abstracting the 
point cloud.

Graph convolution-based architectures aim 
to  solve the problem of local features, that is 
inherent to the classical shared MLP by inter-
preting the point cloud as a graph. Dynamic 
graph CNNs create an operation – EdgeConv, 
which generates permutation invariant edge 
features based on each point’s relationship to 
its  local  neighbors / Wang et al. 2019/. The Fig. 5 | Overview of the types of deep learning architectures for different 3D representations
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 modularity and  straightforward implementation make it easy to inte-
grate into the basic version of PointNet.

Point convolution is another family of recent architectures, which 
apply continuous convolutions directly to a 3D point set. Inspired by 
image convolutions KPConv / Thomas et al. 2019/ defines the kernel 
explicitly as a set of kernel points with either a flexible or rigid con-
figuration. The lack of a spatial data structure, required for the con-
volution operator to compute correspondences between its kernel 
and the input point cloud is solved by computing a weighted average 
of each kernel point’s neighbors’ features based on the Euclidean 
distance between them. The resulting matrix of input features is 
multiplied by a learned kernel matrix which encodes the density of 
the kernel’s neighborhood as a feature vector of the point the kernel 
currently operates on. The authors argue that their method generates 
superior local features, due to the ability of KPConv to better encode 
local surface deformation. In PointConv / Wu et al. 2018/, convolution 
kernels are treated as nonlinear functions based on the local coor-
dinates of 3D points.

These functions include both weight and density components. The 
weight functions are acquired through multi-layer perceptron net-
works, while the density functions are acquired through kernel 
density estimation, all in relation to a specific point. Efficient compu-
tation of weight functions enables the network to enhance its perfor-
mance and scalability.

The self-attention operation has recently emerged from the field 
of natural language processing, due to its ability to capture long-
range context and thus create a richer feature representation 
/ Vaswani et al. 2017/. In general, attention is a set of learned rele-
vance scores which describe the importance between all elements 
in a sequence for the interpretation of any other given element of the 
same sequence. It is therefore more flexible than the convolutional 
operator which only focuses on a direct neighborhood but also 
comes at the cost of high memory and computational demands. 
Further works have shown that treating pixels in an image as a 
 sequence makes the application of attention layers possible which 
has been shown to produce state-of-the-art results in image analy-
sis / Yuan et al. 2021/. In the field of point cloud processing attention 
mechanisms have also been used to produce high-performing 
models with the main issue being a trade-off between large receptive 
field and computational demand / Engel et al. 2021/, / Lai et al. 
2022/, / Park et al. 2022/. Engel et al. first introduce local vector 
self-attention applied on the k -nearest neighbors of each points 
/ Engel et al. 2021/. Lai et al. enlarge the receptive field by including 
sparsely sampled key points far away from the query point / Lai et al. 
2022/. Most recently voxel hashing has been applied in conjunction 
with local self-attention to relieve a large amount of the computa-
tional overhead / Park et al. 2022/.

4.3.4  Fusion-based

To balance the disadvantages of one type 
of representation with the advantages 
of  another, there are different ways to 
combine them. The transfer of hidden 
knowledge at both the point and voxel 
representation occurs through knowledge 

distillation from Point-to-Voxel / Hou et al. 2022/. To improve the 
learning efficiency of affinity distillation, they proposed the super-
voxel partition and the difficulty-based sampling strategy. The com-
bination of complementary projections with a learnable fusion based 
on the point-based KPConv approach is presented in / Kellner et al. 
2022/. In / Xu et al. 2021/ a fusion framework with multiple and 
mutual information interaction between all three representations 
presented is introduced. To enable the interaction between the dif-
ferent representations, a special Range-Point-Voxel indexing system 
is developed using hash mapping.

4.4 Instance Segmentation

Fig. 6  clarifies the difference between semantic segmentation and 
instance segmentation. Semantic segmentation involves pixel-level 
classification, while instance segmentation distinguishes between 
individual objects in addition to pixel labeling. This is why the abut-
ment and railing, for instance, are colored differently, since they 
belong to different instances in the second image.

As previously noted, the process of object instantiation is often 
divided into two separate stages, although there are several methods 
that propose it in an end-to-end, learnable way. In / Wong et al. 
2020/, a bird’s eye view is processed by a 2D convolutional feature 
pyramid network to create a category-agnostic embedding space to 
cluster points into instances using DBSCAN. The segmentation is 
based on the spherical projection and the instances are created 
using DBSCAN with a weighted distance function in / Chang & Chen 
2021/. SGPN / Wang et al. 2018/ constructs a feature similarity 
matrix, based on the feature output generated by PointNet++, to 
group points of similar features into instances. PointGroup / Jiang 
et al. 2020/ utilizes a 3D U-Net backbone for obtaining semantic 
labels and proposes point clustering with dual coordinate sets. Ad-
ditionally, PointGroup creates ScoreNet to predict instance scores. 
Using a 3D U-Net backbone to extract semantics or point-wise fea-
tures is a common strategy. All of the following examples use this 
basic structure, even if it is slightly modified, but customize the 
subsequent instantiation step. The SoftGroup / Vu et al. 2022/ module 
enables multiple class associations for each point to alleviate issues 
arising from semantic prediction errors. OccuSeg / Han et al. 2020/ 
performs graph-based clustering guided by object occupancy signal 
for more accurate segmentation outputs. HAIS / Chen et al. 2021b/ 
extends PointGroup and introduces a set aggregation and intra- 
instance prediction to refine the instance at the object level. Mask3D 
/ Schult et al. 2023/ and SPFormer / Sun et al. 2022/ make use 
of  Transformer decoders to generate object instances. Within the 

Fig. 6 | Visualization of point clouds with semantic and instance segmentation

(a) Semantic             (b) Instances
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former, instance queries are learned 
by iteratively attending to features in 
the point cloud at multiple scales. 
Combined with point characteristics 
generated by the backbone, the que-
ries for the specific instance gener-
ate all instance masks simultaneous-
ly. The latter, first use a superpoint 
pooling layer to pool potential point-
wise features into superpoints, fol-
lowed by a query de coder where 
learnable query vectors can capture instance information by super-
point cross-attention.

4.5 Comparison and Discussion

Rule-based approaches are often intuitive and computationally effi-
cient compared to more complex methods such as deep learning, 
for example, because they do not require as much training data. 
However, they may have limitations in dealing with complex or am-
biguous scenarios, and their performance depends heavily on the 
quality and appropriateness of the predefined rules. Furthermore, 
inferring the necessary domain knowledge is often non-trivial. In 
/ Ponciano et al. 2021/, the rule knowledge-based approach and 
deep learning are compared and their advantages and disadvantages 
are discussed in more detail.

Moreover, it is noteworthy that approaches already exist that 
mitigate the weaknesses of each approach while exploiting the 
strengths of the other. In / Landrieu & Boussaha 2019/, a neural 
network with low complexity learns deep embeddings of local ge-
ometry and radiometry for 3D points. These embeddings are used to 
oversegment the point cloud by formulating a graph partitioning 
problem. Alternatively, a neural network approach has been pro-
posed to decide whether to include a point in a new region, allowing 
for the implementation of a region growing method for object seg-
mentation without any assumptions of their shapes and sizes / Chen 
et al. 2021a/.

5 GEOMETRY EXTRACTION

Geometry extraction is a central processing step in which relevant 
geometric objects in 3D point clouds are detected as automatically 
as possible and parameterised for further processing. This step 
plays a crucial role in the detection of contours and special features 
of individual structural elements and thus serves as a basis for 
creating comprehensive BIM entities that are as accurate, complete 
and reliable as possible. In the following, we will present several 
common methods for geometry  extraction in the automated creation 
of BIM models from 3D point clouds in order to explain this crucial 
step in more detail. We will primarily concentrate on techniques such 
as Principal Component Analysis (PCA), Hough Transform, Random 
Sample Consensus (RANSAC), and  the use of primitive fitting to 
extract geometric properties, see Fig. 7.

5.1 Principal Component Analysis

Principal component analysis (PCA) was first introduced by / Pearson 
1901/ and later refined by / Hotelling 1933/ and is an analytical 
method utilized to gather statistical information in large data sets. In 
this method, the number of variables in the data is reduced by re-
placing them with a smaller set of uncorrelated variables. These new 
variables, linear combinations of the original data, are carefully se-
lected to maximize variance while ensuring accurate data represen-
tation and are commonly referred to as principal components. They 
summarize the essence of the data set and can be interpreted as 
approximations of lines, planes, or hyperplanes (in k-dimensional 
space) that span the original data and provide spatial orientation. The 
principal components of a data set can be found by solving an eigen-
value/eigenvector problem using, for example, a Singular Value 
 Decomposition (SVD). In general, PCA is an indispensable tool for 
reducing the dimensionality of data, which is widely used in fields 
such as computer vision, remote sensing or, as already mentioned, 
for the 3D reconstruction of complex structures. / Maalek et al. 2019/ 
employs embedded PCA to extract planar and linear elements in 
their approach for automatically recognizing structural objects.

PCA is a useful tool for extracting distinctive geometric features 
from a local set of points / West et al. 2004/. These properties are 
obtained by establishing a link between the eigenvalues li acquired 
from the eigenvalue decomposition, where l1 > l2 > l3. The 
 geometric features are explicitly defined in / Weinmann et al. 2013/ 
and presented in Tab. 1  and visualized in Fig. 8.

Fig. 7 | Geometry extraction techniques from 3D point clouds
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Since point cloud properties are dependent on the chosen neigh-
borhood size, / Demantké et al. 2011/ investigates the optimal neigh-
borhood size for each point. Additionally, they demonstrate that the 
approach can be utilized for classification and segmentation purpos-
es and is effective for point clouds acquired from various sensor 
systems. / Poux & Billen 2019/ expands on this concept by utilizing 
geometric properties as a foundation with relationships and topology 
between voxel entities to generate a knowledge-based decision tree 
to allow for indoor classification. Meanwhile, / Hackel et al. 2016/ 
uses these characteristics to identify contour points that highlight the 
shape of a curve or surface in which there is an abrupt change in 
direction or curvature. Based on calculated properties, a binary 
random forest classifier predicts whether a point is a contour point.

5.2 Hough Transform

The Hough transform, a pioneering technique in image and signal 
processing, has its origins in the 1960s. Developed by Hough / Hough 
1962/ to detect lines in binary images, this transformation method 
has evolved significantly over the years and is used not only in tra-
ditional image analysis, but also in more complex scenarios such as 
the analysis of 3D point cloud data. Originally, the Hough transform 
was developed for the detection of lines, but its versatility and 
 adaptability have allowed it to be used for the detection of other 
geometric shapes such as circles, ellipses, and planes. In general, it 
provides a robust approach to detecting linear and planar structures 
within the data. By representing each point in the cloud as a pa-
rameterized entity in a so-called parameter space or Hough space, 
the Hough transform accumulates votes for specific parameters that 
correspond to the presence of lines or planes. In the case of line 
detection, for instance, each data point generates a curve in the 
Hough space based on angle and distance parameters. Points lying 
on the same line in the original space intersect at common points in 
the Hough space. The point with the most intersections of curves in 
Hough space represents the most probable line. By selecting appro-
priate threshold values, the line can be detected and extracted. This 

technique is versatile and extends to detecting various 
shapes by altering the parameterization. In the context of 
3D point clouds, the concept remains analogous, yet the 
parameter space expands to encompass extra dimensions.

For the detection of planes in 3D point clouds, for in-
stance, we get a 3D Hough space, wherein each point of 
the point clouds generates a sinusoidal plane. It is impor-
tant to note that while the Hough Transform is a powerful 
tool, it can be computationally expensive, especially in 
high-dimensional spaces. Various optimizations and adap-
tations have been proposed over the years to make it more 
efficient for different applications and types of data. The 
approach for the 3D reconstruction of interior wall surfaces 
presented in / Adan & Huber 2011/, for example, extract 
planar wall surfaces using the Hough transform. Also 
/ Okorn 2010/ apply the Hough transform to extract walls 
for automatic modeling of floor plans. A detailed overview 
of the plane detection in 3D point clouds using the Hough 
transform is given by / Borrmann et al. 2011/.

5.3 RANSAC

The Random Sample Consensus (RANSAC), introduced in / Fischler 
& Bolles 1981/, is an iterative method for eliminating outliers in a 
dataset as a pre-processing step to estimate the parameters of a 
mathematical model. Its basic working principle involves iteratively 
selecting subsets of data points, fitting a model to each subset, and 
evaluating the quality of the fit. Therefore, the data points are divided 
into inliers and outliers based on a specified tolerance. If a certain 
predefined threshold is met by the number of inliers, the model is 
accepted to describe the data well. Otherwise, another sub-sample 
will be tested.

RANSAC is particularly well suited for detecting primitive shapes 
in 3D point clouds containing a significant amount of noise and/or 
outliers. Many approaches have been derived from its basic concept. 
There are quite a few adaptations regarding runtime, accuracy or 
robustness, and a general overview is given in / Choi et al. 2009/. 
Here, we focus on examples where RANSAC is used to obtain geo-
metric objects. In / Schnabel et al. 2007/, for example, a high perfor-
mance RANSAC algorithm is developed to extract a variety of differ-
ent geo metric primitives, such as planes, spheres, cylinders or 
cones, which is directly implemented in the approach to extract walls 
for an automatic reconstruction of building models proposed by 
/ Ochmann et al. 2016/. In addition, / Bassier & Vergauwen 2020/ 
extract wall axes from 3D point clouds using RANSAC to reconstruct 
BIM wall objects. Fitting as many planes as possible with RANSAC 
and creating surfaces from them using the intersections is done by 
/ Nan & Wonka 2017/. An optimal subset of the candidate surfaces 
is selected by a binary linear programming formulation, producing a 
lightweight, manifold, and watertight reconstructed model. In addi-
tion, there are first approaches that combine neural networks with 
RANSAC to guide the sampling of the minimal set / Brachmann & 
Rother 2019/.

One of the drawbacks of RANSAC is the considerable computa-
tional costs, depending on the model chosen, the ratio of inliers to 

Fig. 8 | Calculated features from Tab. 1. The color is scaled from blue, green, yellow to 
red for the feature value of range [0, 1]. We used the implementation from / Kellner et al. 
2023/ for calculation.
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outliers, and the desired probability of identifying a model that 
is free of outliers. Accordingly, it is not possible to determine 
 complex geometric objects with a high outlier-to- inlier ratio. 
Point clouds in infrastructure scenarios typically consist of 
millions of points, only a fraction of which are associated with 
actual geometric structures. In this context, deep learning 
techniques play a role in assisting RANSAC methods by mini-
mising the number of potential candidate points.

5.4 Fitting Geometric Primitives

The concept of fitting primitives, as explained in Section 4.1.1, can 
also enable the extraction of geometric models. For instance, one 
can segment points within a basic shape while simultaneously pro-
viding a parametric description of the shape. Primitive geometric 
shapes including lines, planes, spheres, cylinders, and cones can be 
easily described using a set of specific parameters and are  frequently 
found in human-created objects. Some examples of geometric 
primitives are shown in Fig. 9. The parameters required to describe 
the geometry are highlighted in red.

As mentioned above, RANSAC is a commonly used method to 
determine the inliers and outliers corresponding to a defined object. 
Knowing the inliers allows the model parameters to be determined 
in a subsequent step using, for instance, least squares approaches.

However, there are alternative approaches available for parameter 
determination. A neural network based on PointNet++ is proposed 
in / Li et al. 2019/ to predict per-point properties, and then the prim-
itive parameters are estimated using a differentiable model estima-
tor. In / Tulsiani et al. 2017/, the problem is further simplified by de-
scribing each object with volumetric primitives (rigidly transformed 
cuboids). A neural network based on 3D convolutions is then trained 
to assemble arbitrary 3D objects from the given primitives. In this 
way, 3D shapes can be described in a highly abstracted and simpli-
fied way.

5.5 Fitting Parametric Surfaces

Parametric surfaces use parameterized equations to describe points 
on a surface in three-dimensional space. The parameters vary over 
a range, and the equations define how the coordinates of points on 
the surface change as the parameters change. Bézier or B-spline 
curves, for example, are used to describe such freeform curves and 
surfaces. An n -degree Bézier curve is a parametric curve defined by 
n  + 1 control points. Adjusting one control point affects the whole 
curve. This is the main difference to B-splines, where a change only 
has a local effect and only part of the curve needs to be recalculated. 
Non-Uniform Rational B-spline (NURBS) are an extension using the 
B-spline basis function and allow for non-uniform spacing of weight-
ed control points.

Fitting such curves is more complex than fitting primitives as 
described in Section 5.4. For example, the number of control points 
needed to achieve the required accuracy is not known in advance. 
For this reason, least squares methods are usually used to obtain 
them / Piegl & Tiller 1996/. However, this does not allow the curve to 

be optimized locally. For this reason, an iterative process is often 
used to adjust the number of control points / Deng & Lin 2014/. In 
/ Park & Lee 2007/, so-called dominant points are used to implement 
the concept of adaptive curve refinement, which means that fewer 
curve segments are generated for flat regions, but more for complex 
regions. Instead of optimizing the B-spline curve, the weights are 
iteratively optimized with the least square method in / Wang et al. 
2022/.

How well NURBS can match bridge structures can be seen in 
/ Barazzetti et al. 2016/. Although the generation is not automated, it 
demonstrates that the traditional BIM approach for buildings can 
also be applied to a complex medieval bridge. Other use cases in-
clude bridge deformation analyses in terms of a distance metric of 
two models recorded at different times. In / Kermarrec et al. 2020/ 
the automatic fitting of a B-Spline is additionally supported by a 
stochastic model of the laser scanner. The mathematical approxima-
tion of the surface accounts for variations in the noise levels of the 
scanner, thereby allowing for a more accurate distance metric be-
tween the two models, compared to a point cloud-based distance.

5.6 Discussion

The algorithms used to extract geometric primitives, such as 
RANSAC, PCA, Hough transform, or clustering algorithms, are usu-
ally not used individually but are often integrated in a process chain. 
While the methods themselves can produce good results, they are 
often not scalable to large and complex scenes containing many 
different objects. For example, a semantically segmented point cloud 
can drastically reduce the inlier-outlier ratio, which has a direct im-
pact on the complexity of the RANSAC algorithm. A semantically 
segmented beam, for instance, can be fitted much more easily by a 
geometric primitive than using the whole scene. In the same way, 
the misclassified points can be detected as outliers. Therefore, by 
combining these techniques with other methods like deep learning 
approaches, researchers and engineers can achieve more accurate 
and comprehensive reconstructions of the 3D scenes or objects from 
point cloud data.

6  MODEL CREATION

Once the relevant objects have been identified, instantiated if nec-
essary, and geometrically modeled, the object must be converted to 
the desired data representation. There is a wide range of possible 
ways to represent 3D data, that all serve different purposes in fields 
such as computer graphics, computer-aided design (CAD) or com-
puter vision, each with a different way of expressing and modeling 

Fig. 9 | Geometric primitives and corresponding parameters
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shapes, structures or objects in a mathematical or computational 
form. Specifically, standard CAD geometric representations are often 
categorized into explicit and implicit where the choice of representa-
tion is dependent on the use case / Borrmann et al. 2018/. In the 
following, we briefly describe each with its relevance to the Scan-
2BIM workflow, followed by some concrete examples of bridge infra-
structure.

6.1 Explicit Representation

The most common way of representing geometry is by explicitly 
defining a wire-frame, a surface or a solid. Wireframe modeling 
uses only lines and points to define edges and vertices. In this way, 
a skeleton of the object, without surfaces or volumes, describes the 
object. Connecting multiple edges in a closed loop can be used to 
form surfaces, which is the basis of surface modeling (Fig. 10a ). 
Further connecting surfaces to form a watertight shape is called 
solid modeling and is the preferred representation for multiple 
BIM-related downstream tasks, such as quantity takeoff. The most 
widely used forms to represent surfaces and solids include Polygonal 
representations (Mesh) – Fig. 10c  and Boundary representations 
(BRep) – Fig. 10b . Polygon representations follow the idea of using 
flat polygons with straight edges (usually triangles or quads) to ap-
proximate the surfaces of an object. Fig. 11  shows a simple model 
describing the main components of the bridge. In this example, each 
bridge component is modeled by using the wireframe representation.

Mesh representations are used as the basis for numerical analy-
ses, such as finite element models, and are beneficial due to their 
simplicity and integration into many software pipelines. Their draw-
back, however, is the increase in required storage capacity, when 
curved surfaces are to be represented accurately.

Boundary representations (BReps) can be viewed as an extended 
variant of polygonal geometry, which allows for an analytical descrip-
tion of edges and surfaces e. g. planes or polynomial functions (see 
Sections 5.4 and 5.5). Compared to meshes, smooth curved surfaces 
described by BReps often have a significantly lower amount of faces 

with a comparable or better adhesion to a desired surface. They are 
therefore the preferred method in BIM applications and have been 
included in multiple international standards, such as STEP / ISO 
10303-21:1994/ and IFC / ISO 16739-1:2018/ (see Section 6.3).

6.2 Implicit/Parametric Representations

An alternative way of representing geometry is by specifying the 
basic modeling steps needed to construct the model. As the actions 
taken to create a desired geometry are preserved, subsequent 
changes to the base geometry are made possible, which is a favora-
ble quality in iterative workflows such as design. A simple standard-
ized type of implicit representation is that of Constructive Solid 
 Geometry (CSG), which can define hard-surface objects as a binary 
tree, where leaves are composed of primitive shapes (see Sec-
tion 5.4) and nodes represent the performed boolean operations 
(intersection, union, and difference). Other variants include proprie-
tary representations in CAD software, which often store the complete 
history of complex geometric operations, such as revolution, sweep-
ing, lofting and extrusion, while additionally enabling the use of pa-
rameterized 2D drawings used in the process / Autodesk n. d. a/. As 
discussed by / Sacks et al. 2008/ a parametrized object is one whose 
geometry and associated data are defined by parameter values and 
it is overall constrained to follow a certain set of predefined rules. 
The rules are pre-established according to the type and properties 
of the modeled component. Some geometric rules that can be 
 established are dimensional horizontal, vertical, perpendicular or 
coincident constraints / Mafipour et al. 2023a/. The representation 
consistency is assured as automatic checks and updates in the 
whole model take place, whenever a component of the model 
 changes the parameters that define it.

Although implicit representations are important for planning work-
flows they introduce an additional modeling and representation 
complexity and lead to a limited interoperability between software, 
which restricts their use in Scan2BIM to only certain edge cases. 
Some examples include the definition of bridges and roads as a 

Fig. 10 | Different geometric representations of a bridge deck Fig. 11 | Visualization of point cloud and geometric model
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series of cross-sections and a corresponding alignment curve – 
Fig. 10d, where the alignment curve can serve for better relative 
positioning of building parts or assets. Specific implementations can 
be found in Section 7.

6.3  Data Model Representation

The already described steps of data acquisition, pre-processing, 
semantic segmentation and geometry fitting enable an accurate and 
whenever necessary flexible geometry representation of existing 
infrastructure assets. However, the BIM process strives to facilitate 
numerous workflows throughout the lifecycle of the assets, which 
either require or produce additional non-geometric, alphanumeric 
information, the administration of which requires a data model to 
enable full and sustainable compatibility. These data models com-
monly have a hierarchical object-oriented structure, that aims to 
group objects spatially and semantically. The geometric representa-
tion of building elements often serves the additional role of contain-
ing and mediating this information and is therefore associated with 
a specific semantic type.

A vendor-neutral standardized / ISO 16739-1:2018/ schema 
that enables a detailed and holistic digital description of the built 
environment is the Industry Foundation Classes (IFC) schema 
 authored by the buildingSMART International (bSI) organization 
/ buildingSMART International 2023/. A schema in this context can 
be viewed as an agreement on common concepts that prescribe 
the instantiation of models and objects / Cerovsek 2011/. A particu-
lar object type may be associated with a predefined set of alpha-
numeric properties but is not restricted to a specific geometric 
 representation, allowing a single instantiated object to have multiple 
alternative represen tations, depending on the use case. The IFC 
schema may be  expressed using several formats among which 
the STEP physical file format with extension .ifc is the most widely 
used in practice / buildingSMART International 2022a/. Although 
IFC was initially proposed for buildings, as of version IFC4.2, the 
schema explicitly supports the description of bridge structures too 
/ Borrmann et al. 2019/, / buildingSMART International 2022b/. The 
extension of the schema introduces some key methods for the local-
ization and grouping of elements, such as support for georefer-
encing, positioning of building elements along an alignment curve 
and object containers such as “substructure” and “superstructure”. 
As reported in the official initial proposal of the IFC extension for 
bridges / Borrmann et al. 2019/, it was decided that the IFCBridge 
extension considered the most common types of bridges such as 
slab bridges or girder bridges. Although as mentioned in the pro-
posal, bridges of truss or arch type were expected to be represent-
able as well. This can be verified in the work of / Justo et al. 2023/, 
where several IFC entities  model a section of a bridge of truss type, 
principally considering the IFC4.2 version 
reported byits authors. More recently, ad-
ditional support for further infrastructure 
projects, such as road, rail and ports has 
been added in  version 4.3, which as of 
2024 has been standardized within the 
/ ISO 16739-1:2024/.

7  PROTOTYPICAL IMPLEMENTATIONS  
OF A SCAN2BIM APPROACH

There are already a number of approaches to what a possible work-
flow might look like to transform the captured 3D data into a BIM 
model. All share the same idea of abstracting the captured data into 
a digital model that represents the physical elements, geometry, 
relationships and attributes of the building in a detailed and para-
metric manner, that would allow for further adjustments and be 
compatible with established BIM standards. The traditional workflow 
can be broken down into two parts: the survey workflow and the BIM 
modelling workflow, of which the second is associated with the 
predominant portion of the workload / Rocha et al. 2020/, motivating 
research into the direction of automation.

A BIM model is built upon a library of predefined object types 
(also sometimes called families), which are then instantiated within 
the context of the model. An object instance may inherit some of its 
properties from its type but often carries additional information that 
is specific to its occurrence and state. Furthermore, single building 
parts are often related to other parts of the model through objectified 
relationships, which allow the definition of a spatial hierarchy as well 
as the semantics of structural connections. The result of this process 
is a geometric-semantic model, which can be enriched throughout 
an asset’s life cycle with data from different damage detection 
methods (see Fig. 12 ) and be used as the basis for structural analy-
sis in the form of Finite Element Analysis (FEA) models / Fedorik et al. 
2016/. Specific approaches which automate the modeling process 
are mostly domain-specific due to the required geometry parametri-
zation, modeling precision and semantics. Therefore, in the following 
we look into processes, that focus on the generation of BIM models 
for bridges in specific.

While typical building construction is mostly limited to flat planar 
regions, bridges tend to have more complex geometry, due to e. g. 
non-straight horizontal alignments or complex girder types. The 
application of BIM in the sector of bridge design and documentation 
is still in development and some approaches focus solely on non- 
automated bridge BIM model generation processes. In / Mohammadi 
et al. 2022/ a case study is presented for the creation and quality 
evaluation of a Scan2BIM of a complex cable-stayed bridge. The 
process of setting the alignment, profile slicing and modeling was 
achieved within the Tekla Structures Software, following a dimen-
sional comparison with the as-planned CAD model. In / Girardet & 
Boton 2021/ a parametric definition is created using the Grass-
hopper visual programming language / Grasshopper 3D n. d. /. The 
definition aims to describe and model a large variety of bridge de-
signs with a single parametric program.

When faced with the challenge of automating the Scan2BIM 
workflow, some authors address a holistic end-to-end approach, 
while most focus on single steps (see Tab. 2 ). Based on the 

Fig. 12 | Digital twin workflow for infrastructure
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 commonalities of the analysed methods the BIM modelling workflow 
for bridge infrastructure can be summarised in the following sequen-
tial steps:

 � Step 1: Semantic and/or instance segmentation;
 � Step 2: Definition of main axis or alignment per object;
 � Step 3: Slicing of object along said axis;
 � Step 4: Estimation of 2D-profiles at sliced positions;
 � Step 5: BIM model generation based on profiles.

Differences in the overall approach to the first step (semantic seg-
mentation) allow the described methods to be roughly grouped into 
bottom-up rule-based, top-up rule-based and deep learning ap-
proaches. Bottom-up approaches start from low-level features, from 
which higher-level features, such as fitted planes, normals, etc. can 
be derived. Top-down approaches instead break down a complex 
segmentation problem into a series of sequential segmentation tasks 
which are simpler and can be solved by heuristic algorithms. Lastly, 
deep learning methods learn to derive high-level features based on 
low-level features from the input.

7.1 Bottom-up Rule-based Approaches

After aligning a chosen bridge to the world coordinate system / Lee 
et al. 2020/ use a variation of the RANSAC algorithm to fit planes to 
the pre-segmented point cloud of the deck. The relative distances 
and orientations of the planes to each other are used to derive the 
optimal values for the parameters of a standard bridge cross-section. 
/ Truong-Hong & Lindenbergh 2022/ approach semantic segmenta-
tion as a two-step process consisting of surface extraction and 
surface classification. The surface extraction is achieved by means 
of voxel and cell-based region growing, while the classification of 
individual surfaces is approached by introducing contextual knowl-
edge, such as the probable shape, orientation, location and minimal 
dimension of each semantic class. / Qin et al. 2021/ combine a top-
down pre-segmentation of ground from bridge points, followed by 
primitive fitting of cuboids and cylinders. To achieve the latter, the 
authors simplify the 3D fitting problem into a 2D problem by deter-
mining the extrusion axis of primitive shapes and slicing the geom-

etry along these axes. The parameters of rectangles are determined 
through corner detection on the slices, while the circle center and 
radius are determined using least-squares. As a final step, the pro-
files are imported into the visual programming environment “Dyna-
mo” / Autodesk n. d. b/ to create a parametric BIM model, making use 
of the semantics provided by the software. However, the method 
notably relies on a restrictive assumption of only modeling primitive 
shapes.

7.2 Top-down Rule-based Approaches

In / Lu et al. 2019/ known topological constraints in reinforced 
 concrete slab and beam-slab bridges are utilized in order to perform 
top-down semantic segmentation. The bridge point cloud is aligned 
to the world coordinate system using PCA. Afterwards, slices are 
extracted, which are then classified based on extracted geometric 
features such as the relative height of the slice. The process is 
performed once to segment pier assemblies and again to segment 
single piers. Subsequently, density histograms are used to segment 
girders from the deck. Similarly, / Yan & Hajjar 2021/ restrict their 
search space on steel girder bridges but don’t assume a straight 
shape. Instead, an iterative algorithm is presented which can derive 
a curved horizontal alignment constructed of linear segments that 
follow the shape of the bridge. This alignment then serves as a ref-
erence for subsequent steps, such as slicing the bridge perpendic-
ularly to the direction of the alignment at regular intervals and for 
distinguishing between longitudinal and transverse elements based 
on their relative orientation to the alignment axis. Sub-clouds are 
projected on the slices and a 2D RANSAC is used to fit lines to the 
projected points (see Section 4.3.1) to form a line drawing of the 
cross-section. This allows finding the best fitting candidate from a 
set of predefined I-profiles by minimizing their deviation to the 
cross-section. In / Lu & Brilakis 2019/ the authors assume the se-
mantic segmentation has been accomplished by an upstream pro-
cess and solely focus on extracting an IFC model from the segment-
ed point cloud. After aligning the principal direction to the x -axis the 
horizontal and vertical alignments are each estimated by fitting a 
second-degree parabola using least squares. Slicing methods are 
then used to estimate the cross-sections of the slab, piers, pier caps, 
and girders. For most components, a 2D-concave hull is used to 
describe the cross-section, with the exception of the girders, where 
template matching with existing pre-cast catalogs is preferred in-
stead.

7.3 Deep Learning Approaches

While each of the previously described rule-based approaches fo-
cused on a predefined type of bridge, deep learning models can 
normally be applied to a dataset with a much greater variance. This 
is achieved by stacking multiple hidden layers which each learns 
progressively higher-level features (see Section 4.3). Deep learning 
methods, however, come with the drawback of requiring a large 
amount of training data in order to create a robust classification 
model.

Step 1 Step 2 Step 3 Step 4 Step 5

/Lee et al. 2020/ 9 9 9

/Quin et al. 2021/ 9 9 9 9 9

/Truong et al. 2022/ 9

/Mafipour et al. 2023b/ 9 9 9 9

/Lu et al. 2019/ 9

/Girardet et al. 2021/ 9

/Yan et al. 2021/ 9 9 9 9

/Lu & Brilakis 2019/ 9 9 9 9

/Martens et al. 2023/ 9

/Xia et al. 2023/ 9

/Mohamaddi et al. 2023/ 9 9 9 9

Tab. 2 | Overview of Scan2BIM approaches in the bridge domain
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In / Martens et al. 2023/ the authors address the lack of widely 
available datasets in the point cloud domain and construct a hybrid 
approach for semantic segmentation, which combines point cloud 
geometry with images. They make use of a pre-trained Mask R-CNN 
deep neural network for image segmentation and project semantic 
labels onto the point cloud. Subsequently, region growing and fea-
ture-based filtering are applied based on geometric information in 
order to improve the quality of the result. Other methods, such as 
/ Xia et al. 2022/ apply multi-layer perceptron after extracting 
hand-crafted features based on the Signature of Histograms of 
OrienTations (SHOT) / Salti et al. 2014/. Finally, the segmentation 
results are refined using DBSCAN (see Section 4.1.2). In / Mafipour 
et al. 2023b/ the deep learning architecture RandLA-Net is used for 
the semantic segmentation with a custom-made spatial encoder. The 
authors introduce a parametric prototype model (PPM), which takes 
inspiration from a parametric BIM family, where parts of the geom-
etry are controlled by parameters, that can take a range of continu-
ous or discrete values. From the output of the semantic segmenta-
tion, the most appropriate PPM is chosen, after which a particle 
swarm optimization algorithm is used to derive the best parameters 
of the PPM, based on the projected point cloud at each slice. In 
contrast to primitive fitting, the PPMs can define a geometric profile 
with arbitrary complexity while maintaining interoperability with BIM 
conventions.

A different approach is taken in / Hu et al. 2021/, where Hu et al. 
demonstrate an end-to-end deep learning method for deriving a BIM 
model of a cable-stayed bridge from a combination of a photogram-
metry-based point cloud and the images used as an input to the 
structure from motion algorithm (see Section 2.2). In this instance a 
combination of a simple PointNet backbone is used together with a 
multi-view CNN in order to extract a joint embedding of the data, 
which is then decoded recursively by a binary tree network, resulting 
in a reconstructed geometric model, consisting of primitives for 
simple shapes and meshes for complex parts. Notably, the linear, 
rotational, and symmetric repetition of a single type of object is 
captured by the method which is valuable for describing structures 
such as steel trusses in bridges.

8 CONCLUSION AND RESEARCH PERSPECTIVES

The automatic creation of a geometric-semantic model is a challeng-
ing problem, which shows great potential for improvement, especially 
in light of recent technological developments. Approaches for se-
mantic segmentation are currently predominantly rule-based, which 
come in either a top-down or bottom-up form. These methods achieve 
good results but deal with design restrictions, such as focusing on 
a certain construction type or assuming a straight horizontal align-
ment. So far, rule-based approaches promise robustness when 
dealing with data coming from different sensors and possible occlu-
sions / Yan & Hajjar et al. 2021/. Although the creation of an actual 
BIM model was rarely implemented it could be seen, how the results 
of intermediate steps used for the semantic segmentation could be 
useful additions to the BIM modeling workflow, such as the grouping 
of elements in assemblies / Lu et al. 2019/ and the derivation of the 
horizontal alignment / Yan & Hajjar et al. 2021/, which is a crucial 

element for the geometric representation of a bridge according to 
the IFC standard / ISO 16739-1:2018/. On the other hand, deep-
learning-based approaches so far mostly focus on semantic seg-
mentation and although some high-level features are extracted, 
these are not human-readable and don’t currently contribute to the 
creation of any relationships or to the geometry extraction, which 
have to be handled in isolation by subsequent processes. Neverthe-
less, promising potential has been demonstrated for decoding the 
latent information, captured by deep learning models in order to 
facilitate end-to-end semantic-geometric modeling.

Even though deep learning methods present a promising ap-
proach for even the most complex infrastructure assets, there re-
mains a challenge with their application in practice, due to their lack 
of interpretability and sometimes unexpected results, especially 
given the high variety of data sources and available bridge types. 
Furthermore, another challenge is the need to combine different 
types of data, such as images, point clouds and 2D design drawings.

8.1 EXplainable Artifical Intelligence (XAI)

The lack of understanding of the capabilities of a system, including 
the AI-based ones, can effectively hinder its adoption. For certain 
AI-based systems, the expectations from their deployment include 
not only achieving a high performance but also getting some under-
standing of their functionality to verify its results. This broader 
model characterization is particularly crucial in safety-critical do-
mains where malfunctions can lead to severe consequences 
/ Castelvecchi 2016/, / Weld & Bansal 2018/, / European Parliament 
2023/. Enhancing our understanding of the functional capabilities of 
the presented AI-based semantic segmentation approaches would 
refine our characterization of the discussed Scan2BIM workflow, 
unlocking the benefits of its adoption.

EXplainable Artificial Intelligence (XAI) refers to the group of tech-
niques aimed to clarify or detail the learned functions of AI-based 
approaches / Arrieta et al. 2019/. A common strategy towards this 
goal is the attribution of importance to the inputs for a given model 
output. An interesting implementation for point cloud understanding 
is that of / Tan & Kotthaus 2022/. The implementation extends the 
LIME / Ribeiro et al. 2016/ technique by approximating the decision 
boundary of the PointNet / Qi et al. 2016/ with the use of perturbed 
inputs. Regularized linear regression is used to get a model easier to 
understand from the human perspective compared to the original 
model. This work proposes too a verification of the simpler model by 
observing the correlation between the prediction score and the in-
clusion of positive or negative deemed relevant points in a given 
point cloud classification task. 

In / Lapuschkin et al. 2016/ several benefits from the adoption of 
XAI techniques are discussed. For example, the gained knowledge 
from the functionality of the AI-based models could eventually be 
determinant in the choice among models with similar performances. 
Another possible use of XAI techniques is that of finding biases 
within datasets when the model learns from spurious signals. Lastly, 
XAI techniques could also be used to debug models improving their 
generalization ability. Overall, the adoption of XAI techniques pre-
sents itself as a worthwhile research opportunity.
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8.2 Uncertainty Estimation

Another essential quality for the implementation of data-driven sys-
tems is the ability to recognize when the decision-making process 
inevitably fails. Especially with deep learning models this has become 
an increasingly demanded topic, as it has been shown, that the uncer-
tainty metric associated with a prediction or decision of a neural net-
work is often inaccurate / Hein et al. 2019/, particularly for inference 
cases, which are dissimilar from the training data. This has motivated 
research from other safety-critical fields such as autonomous driving 
/ Kendall & Gal 2017/ and medical imaging / Kwon et al. n. d./ to explore 
uncertainty quantification of data-driven approaches. These methods 
may provide a more reliable uncertainty metric and for separating 
between data uncertainty (or aleatoric) from model (or epistemic) 
uncertainty, providing additional insights into where possible im-
provements can be made or which inference cases can be trusted.

Uncertainty estimation is also relevant for the construction and 
infrastructure sectors, where scenes can have a high diversity, and 
various types of data acquisition methods are used (e. g. laser scan-
ning, photogrammetry, etc.). Therefore, if the model is blindly trusted 
some of the scanned objects may be falsely interpreted or missed 
/ Vassilev et al 2024/. Alternatively, if an under-confident uncertainty 
metric is trusted some objects which may have been correctly 
 classified are dropped. Because  as-is” models play a vital role in the 
functions of a digital twin, it becomes vital that their generation does 
not trade efficiency for safety and reliability.

8.3 Multi-modality

3D point clouds and image data may be enriched with various other 
data to maximize the information content of a as-is BIM model or a 
digital twin. An obvious step is using RGB information from geomet-
rically referenced images as attributes of a 3D point cloud. Beyond 
RGB values, information from the non-visible image spectrum may 
be of large interest, especially thermal image information. An exten-
sion of this is impulse thermography where variations of the decay 
of a thermal pulse in a thermal camera image sequence are analyz-
ed to detect damages underneath a surface. Ground penetration 
radar systems may also be used for this purpose.

To derive wall thickness of structures, it is necessary to measure 
interiors or hollow spaces as well as the facade. Terrestrial laser 
scanning for outdoor areas and mobile respectively personal laser 
scanning for indoor areas may be combined effectively for this pur-
pose. In addition, inaccessible construction areas at high altitudes 
may be mapped using UAV-borne sensors.

8.4 Integrating Heterogeneous Data Sources

The fusion of different data sources, such as 3D point clouds, 2D 
plan data, CAD drawings, measurements for specific components, 
and 3D bridge models, is a difficult and complex task in terms of 
Scan2BIM approaches, but one that should not be neglected. This 
integration process presents several significant challenges that re-
quire specific methodologies.

One of the challenges in the integration of heterogeneous data 
sources is the registration into a common reference frame. Matching 
features, such as geometric primitives (see Section 4.1.1), across 
different types of data sets are a prerequisite for the registration 
process. Notably, the extraction of these features varies for each 
data source and requires different processing of the data respectively. 
The feature matching is succeeded by determining the approximate 
values for the transformation parameters in a combined adjustment 
using the method of least squares.

Precision measures play a critical role in this process. While sto-
chastic information is readily available for some data sources, such 
as point clouds obtained from terrestrial laser scanning, they may be 
absent or less precise for others, e. g. 2D plan data. In these cases, 
assumptions must be made about non-statistical uncertainties. This 
can be done by assigning individual variance components to each 
group of observations. These components are iteratively adjusted to 
determine relative precision information. Thus, on the basis of the 
stochastic information of 3D point clouds, the accuracy of fit and 
reliability of the other data sources can be determined.

Reliability measures play an important role in assessing the qual-
ity of the adjustment results. This implies the detection of significantly 
erroneous or incomplete input data using statistical test procedures 
well-known from the field of geodesy as well as removing such er-
roneous data. On this basis, a geometric model reconstruction can 
be performed, including semantic information regarding individual 
components of the model, derived from statistical tests.
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