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1 Introduction

The length of the meridian arc is one fundamental quan-
tity in ellipsoid geodesy and Gauss-Krueger projection.
It is an integral of ellipse and consequently is not analy-
tically integrable. In practice, it is usually expanded into
a series of the eccentricity in order to integrate it term by
term (KLOTZ, 1991). This series converges very quickly
since the eccentricity of a reference ellipsoid is very
small (e2 ≈ 1/150). 

The procedure from the known length of the meridian
arc to its corresponding latitude, or an inverse problem
on the meridian arc, is a bit troublesome and therefore
there exist various different solutions. In general, these
solutions might be divided into the iterative ones and the
direct ones. The iterative solutions are namely to use the
formula for the length of the meridian arc and solve the
corresponding latitude by Newton iteration method.
The direct solutions are to express the corresponding la-
titude in terms of a trigonometric series (MITTERMAYER,
1965; ZHOU, 1984) or a polynomial of the meridian
length (ZHU, 1978).

An inverse problem on the length of the meridian arc
seems to be a solved and out-of-fashion one. Examining
the existing inverse solutions with a slight care, however,
one will find that this problem has not been solved per-
fectly and ideally. This situation, of course, is due to the
complexity of this problem itself (an inverse problem of
ellipse function). On the other hand, it is also because a
few researchers did not grasp the essential point of the
problem.

This paper reconsiders an inverse problem on the length
of the meridian arc. Making use of the derivative rule of
implicit function as well as the Hermite interpolation
principle, two series solutions for an inverse problem on
the length of the meridian arc are presented

2 A Power Series Solution for an Inverse 
Problem on the Length of the Meridian Arc

From (XONG, 1988), the derivative of the meridian arc
with respect to geodetic latitude B reads

(1)

where B is geodetic latitude, a is the semi-major axis of
a reference ellipsoid, e2 is the eccentricity square and X
is the length of the meridian arc from an equator to a
point with geodetic latitude B.

For convenience, we introduce two new denotations

(2)

(3)

It is easy to prove that a new variable corresponds x = 0
and x = π/2 when X = 0 and X = a(1 – e2) w— π/2 respec-
tively. Differentiating eq. (3) and inserting it into eq. (1)
result in

or

(4)

Eq. (4) is an implicit function of x. Therefore, it seems
difficult to expand it into a power series of sin x .To ex-
pand eq. (4) into a power series of sin x, we introduce a
new variable 

t = e2 sin2 x (5) 

and denote eq. (4) as

(6)

Now we try to expand f(t) into the following power se-
ries

(7)

where ft(0), ft
n(0) . . . . are the corresponding derivatives

of f(t) with respect to t respectively.

According to the definition of eq. (4–6), it holds

(8)

(9)

Der Beitrag bietet zwei neue Lösungen zur Be-
rechnung der geographischen Breite aus einer
Meridianbogenlänge. Eine Lösung wird direkt
aus einer Taylorreihenentwicklung abgeleitet,
die zweite Lösung verwendet die Hermite-Inter-
polation.
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The derivatives of f(t) can be in turn determined by the
chain rule for implicit functions. As a result, we have

When t ➝ 0, x ➝ 0, B ➝ 0, it is easy to know

Therefore, we get

(10)

It is difficult to determine the strict derivatives of f(t)
with the order higher than two. Under the assumption
that the order of limit and derivative is exchangeable, we
approximately have

(11)

(12)

(13)

……

(14)

Taking into account B = 0 when t = 0, we arrive at

(15)

(16)

(17)

(18)

……

(19)

Inserting eq. (8) and eqs. (15–18) into eq. (7), we get the
power series of f(t) with respect to e sin x

(20)

Further, making use of the following trigonometric iden-
tities

the integration of eq. (20) with respect to x finally yields
a trigonometric series solution for an inverse problem on
the length of the meridian arc as

(21)

For convenience in application, inserting the expression
of w— into eq. (21), eq. (21) can be rearranged as (as this
procedure is tedious, one could do it by means of MA-
THEMATICA alternatively. MATHEMATICA is one
of the most popular symbolic computation softwares)

(22)

It is worthy to point out that the coefficient of x in eq.
(21–22) should theoretically be one. In effect, the linear
coefficient in the derivation above is equal to

Its error is up to the order of e6. This error, we guess,
might be caused by exchanging the order of limit and de-
rivative, or by the software MATHEMATICA itself.
Anyway, the coefficient of x has to be set to one.

3 An Interpolation Solution for an Inverse 
Problem on the Length of the Meridian Arc

In the section 2, we formulated an analytical solution for
an inverse problem on the length of the meridian arc. Its
correctness and accuracy, however, leave to be proven
and checked. It is not sufficient reasonable to exchange
the order of limit and derivative.

As an alternative, an interpolation method is applied to
an inverse problem on the length of the meridian arc in
this section.

Suppose an interpolation solution for an inverse prob-
lem on the length of the meridian arc as 

(23)

where a2i is the coefficients to be determined. 

We will determine these coefficients by making use of
function values and derivative values at some specific
points, namely a Hermite interpolation.

First from the following formula (XONG, 1988)
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(24)

B(x) at x = π/4 can be with iteration determined. Let
B(π/4) ≈ π/4 as an initial value, we approximately have

Iteration again yields

Investigation shows that the two time iterations have
been sufficiently accurate up to e8. Expanding the equa-
tion above into a power series of the eccentricity, we get

(25)

Inserting eq. (25) into eq. (4) and omitting the tedious
derivation procedure, we get the corresponding deriva-
tive value we expected

(26)

Secondly, a direct simple calculation to eq. (4) yields

(27)

(28)

Eqs. (25–28) have four interpolation constraints, being
suitable to determine four undetermined coefficients.
Inserting these constraints into eq. (23), we obtain one
set of linear equation system as

(29)

Therefore 

(30)

Expanding the relevant terms in eq. (30) into a series up
to e8, eq. (30) readily becomes

(31)

For convenience with a comparison to eq. (22), a slight
modification to eq. (31) results in 

(32)

The coefficients of eq. (32) are either the same as or very
near to those of eq. (22) except the coefficient of e8. This
indicates from the other hand that eq. (22) derived from
Taylor series is accurate and correct though this kind of
comparison seems not to be very logical. Two equations
are derived from completely different approaches. In-
terpolation methods have no errors at data points and
error distributes relatively uniformly while error in a
Taylor series gradually increase with an increase of x.
Therefore, the bigger difference on the coefficient of e8

in eq. (22) and eq. (32) is also understandable and ac-
ceptable.

4 Numerical Examples and Their Error Analysis
Choose a reference ellipsoid as a Krasovsky ellipsoid
with a = 6378245 m, α = 1/298.3. In terms of the direct so-
lution eq. (24), we first compute the length of the meri-
dian arc at those specific points of B = π/8,π/4,3π/8. And
then we re-compute the corresponding latitude value at
points of  x(π/8), x(π/4) and x(3π/8) through eq. (22) and
eq. (23) respectively. 

Computation shows that errors for the inverse solution
in terms of a Taylor expansion in section 2 are

at three points respectively.

Errors for the inverse solution in terms of the interpola-
tion principle are

From this example, it is clear that the inverse solution for
the length of the meridian arc in terms of the interpola-
tion principle is much more accurate than that in terms
of a Taylor expansion. This is because the inverse solu-
tion in terms of interpolations has stronger control on
the interval [0, π/2]. Its constraints are located not only
at the initial point x = 0 but also at the middle point x =
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π/4 and the end point x = π/2. The inverse solution deri-
ved in terms of a Taylor series has derivative constraints
only at the initial point.

5 Conclusions

1. In terms of the derivative rule of implicit functions,
one inverse solution for the length of the meridian arc
is given in the paper. The expression of the general
terms derived in the section, we think, is to some ex-
tent new and therefore makes a significant improve-
ment on the theory of ellipsoid geodesy.

2. In terms of a Hermite interpolation, another inverse
solution for the length of meridian arc is presented in
the paper. As our knowledge, few authors implemen-
ted interpolation methods symbolically as we do here.
This kind of inverse solution derived from a symbolic
interpolation also enhances the basic theory of ellip-
soid geodesy.

3. Both inverse solutions are sufficiently accurate up to
0.”0001. However, the inverse solution in terms of a
Hermite interpolation has much higher accuracy than
that in terms of a Taylor expansion. Therefore, the
former should be recommended in practice.
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Abstract

Two new solutions for an inverse problem on the
length of the meridian arc are described in the pa-
per. One is derived from a Taylor series expan-
sion directly. Another is formulated by means of
a Hermite interpolation. Both of the two soluti-
ons are sufficiently accurate up to 0.”0001. Inve-
stigation in the paper show that the solution by
means of a Hermite interpolation with much high
accuracy should be recommended and implemen-
ted in practice.
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Über 40 Führungskräfte
aus dem deutschen Ver-
messungswesen und der
Immobilienbranche formu-
lierten im 2. Geoforum im
Mai 2000 ihre konkreten
Vorstellungen zur intensi-
ven Nutzung der Geodaten.
Diese Interessengemein-
schaft, zu der auch SICAD
GEOMATICS zählt, zielt
auf den Aufbau einer pri-
vatwirtschaftlichen Betrei-
bergesellschaft ab. Durch
diesen unabhängigen Infor-

mationsdienst, der sich
auch als Moderationsplatt-
form versteht, werden Geo-
informationen, Vermark-
tungsinformationen und
Dienste angeboten und ste-
hen den Nutzern aktuell im
Internet zur Verfügung –
durch derart bedarfsge-
recht aufbereitete und
überregionale Informatio-
nen wird die heute beste-
hende Lücke zwischen Da-
tenanbietern und Bedarfs-
trägern geschlossen. Die

Geodatenproduzenten, die
auch durch Vertreter der
Vermessungsverwaltungen
in der Interessengemein-
schaft repräsentiert sind,
engagieren sich bereits
massiv im Aufbau von Lan-
des-Servern und Metada-
tensystemen. Bereits heute
kann das deutsche Vermes-
sungswesen im internatio-
nalen Vergleich mit der
weltweit besten Datenlage
aufwarten. Zu den Bedarfs-
trägern, für die durch die

Verfügbarmachung quali-
tativ hochwertiger Geoda-
ten gewaltige Ratiopoten-
ziale entstehen, zählen die
Immobilienwirtschaft so-
wie Telematik, Tourismus
und zahlreiche weitere
Branchen.

Weitere Informationen:
SICAD GEOMATICS
Robert Klarner
Otto-Hahn-Ring 6
D-81739 München

Vermessungsverwaltungen machen ihre Geodaten mobil


