
Die Fuzzy-Theorie und neue Bewertungen von
Unsicherheiten erlauben die präzise Modellie-
rung geodätischer Daten. In der vorliegenden
Arbeit wurden unter Verwendung des adaptiven
Network Fuzzy Inference System (ANFIS) Geo-
idhöhen in den Regionen Baden-Württemberg
(Deutschland) und in Izmir (Türkei) mit Erfolg
bestimmt und die Fuzzy Modelle mit vielen
Testpunkten überprüft. Damit wurde gezeigt,
dass das hier verwendete Verfahren bessere Er-
gebnisse als die herkömmlichen Verfahren liefert
und für die Lösung weiterer geodätischer Pro-
bleme in Betracht gezogen werden sollte.

1 Introduction

The shape of the earth and its physical structure have been
described by GAUSS [4] and later named as geoid by
LISTING [10].
The early definition and reasoning of the geoid and its
physical aspects by GAUSS are still valid. Moreover, the
recent technological developments have enabled geode-
sists to establish large geodetic networks consist of points
with known coordinates in the same coordinate system as
GAUSS mentioned in early 1800s.
The studies on the determination of the best fitting Earth-
ellipsoid have been carried on since the early times and as
the geodetic datum, different ellipsoids with different
parameters (semi-major axis, flattening, etc.) have been
calculated. However, one of them is particularly of inter-
est – World Geodetic System 1984 (WGS-84) that is the
coordinate system of the Global Positioning System
(GPS) based on observations to artificial satellites.
Nowadays, gravimetric method is the most commonly
used technique for the precise determination of the geoid.
The precondition for its use is the presence of high-reso-
lution gravity data set. With the lack of gravity data the
geoid could be determined by means of various geometric
methods: astro-geodetic method or geoid heights from
GPS in conjunction with spirit levelling [9].
The need for refined models of the geoid has been driven
principally by the demands of users of the GPS, who must
transform GPS-derived ellipsoidal heights to orthometric
heights, e.g. [2] in order to make them compatible with the
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existing orthometric heights on the local vertical datum.
The orthometric heights are determined by spirit levelling.
The ellipsoidal height is reckoned, along the ellipsoidal
normal, from the surface of any reference ellipsoid to
the point of interest. The orthometric height is reckoned,
along the curved plumbline, from the surface of the geoid
to the point of interest. The geoid height or geoid-ellipsoid
separation is reckoned, along the ellipsoidal normal, from
the surface of any reference ellipsoid to the geoid. The
transformation of ellipsoidal heights to orthometric
heights therefore requires that the geoid height must refer
to the same reference ellipsoid [3].
Regarding the above definitions, the geoid height at each
point is achieved by

N � h�H ð1Þ
where N is the geoid height, h is the ellipsoidal height and
H is the orthometric height. The geometrical relation be-
tween N, h and H is shown in Fig. 1.
The approximate equality in Eq. (1) results from neglect-
ing the departure of the plumbline from the ellipsoidal
normal, which is termed the deflection of the vertical.
It is acknowledged that there is also torsion in the plumb-
line, but the deflection of the vertical is usually the domi-
nant effect of the approximation in Eq. (1). The approx-
imation error can be estimated by multiplying the ortho-
metric height by the cosine of the deflection of the vertical
at the point of interest. However, this approximation error
is in maximum 1– 2 mm level and is considerably smaller
than the accuracy with which GPS-derived ellipsoidal and
orthometric heights can currently be determined. There-
fore, the approximation in Eq. (1) remains valid for the
transformation of heights.

Fig. 1: The geometrical relationship between orthometric
and ellipsoidal heights.
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In the following sections, geoid at Baden-Württemberg
(Germany) and Izmir (Turkey) have been modelled by
means of adaptive neuro-fuzzy inference systems and
the results have been interpreted from the physical point
of view.

2 Adaptive Network based Fuzzy Inference
Systems

Adaptive Network based Fuzzy Inference Systems (AN-
FIS) are feed-forward adaptive networks which are func-
tionally equivalent to fuzzy inference systems. The basic
idea of ANFIS can be described as follows: A fuzzy in-
ference system is typically designed by defining linguistic
input and output variables as well as an inference rule
base. However, the resulting system is just an initial guess
for an adequate model. Hence, its premise and consequent
parameters have to be tuned based on the given data in
order to optimise the system performance. In ANFIS
this step is based on a supervised learning algorithm.
All types of fuzzy inference systems shown in Fig. 2 can
be subjected to such a procedure. However, the complex-
ity of the problem depends on the type of reasoning in the
consequent part even if the results of all three types would
not change significantly for the same data set. Therefore,
in this section, Type-3 ANFIS is explained which is least
complex and hence used for the prediction of the geoid
heights.
For simplicity, assume that the fuzzy inference system un-
der consideration has two inputs x and y and one output f .
Additionally, suppose that the rule base contains two fuz-
zy if-then rules of TAKAGI and SUGENO’s type [13] as
Rule 1: If x is A1 and y is B1; then f1 ¼ p1xþ q1yþ r1:
Rule 2: If x is A2 and y is B2; then f2 ¼ p2xþ q2yþ r2:
The associate Type-3 fuzzy reasoning is illustrated in
Fig. 2(a), and the corresponding equivalent ANFIS archi-
tecture (Type-3 ANFIS) is shown in Fig. 2(b).
Note that the node functions in the same layer are of the
same function family (all circles without parameters or
square nodes with parameters).

The functions of each layer can be described as below.
Layer 1: Every node i in this layer is a square node with a
node function

O1
i ¼ lAi

ðxÞ; ð2Þ
where x is the input to node i, and Ai is the linguistic label
(small, medium, large, etc.) associated with this node
function. In other words, O1

i is the membership function
of Ai and it specifies the degree to which the given x sa-
tisfies the quantifier Ai. Usually, the membership function
lAi

ðxÞ is chosen to be bell-shaped with the maximum
value equal to 1 and the minimum value equal to 0
such as, e.g., the generalised bell function (Fig. 3)

lAi
ðxÞ ¼ 1

1 þ x�ci
ai

� �2
� �bi ; ð3Þ

or the Gaussian function

lAi
ðxÞ ¼ exp � x� ci

ai

� �2
" #

; ð4Þ

where fai; bi; cig (or fai; cig in case of the Gaussian
function) is the parameter set. As the values of these para-
meters change, the bell-shaped functions vary accord-
ingly. Thus various membership functions on linguistic
label Ai are defined. In fact, any continuous and piecewise
differentiable functions, such as commonly used trapezoi-
dal or triangular-shaped membership functions can also be
considered as qualified candidates for node functions in
this layer. Parameters in this layer are called “premise
parameters”.

Layer 2: Every node in this layer is a circle node, which
performs a fuzzy intersection operation on the incoming
signals from the first layer and sends the result to the next
layer. For instance,

wi ¼ lAi
ðxÞ � lBi

ðyÞ or wi ¼ min½lAi
ðxÞ; lBi

ðyÞ�; i ¼ 1; 2:

ð5Þ
The left equation shows fuzzy intersection by the al-
gebraic product, the second one the minimum intersection
as they are called. Both variants are consistent extensions
of intersection in classical set theory. Please note that
each node output represents the firing strength of a rule
(Fig. 2).

Fig. 2(a), (b): (a) Type-3 fuzzy reasoning, (b) Equivalent
ANFIS (Type-3 ANFIS)

Fig. 3: Meanings of the parameters in the generalised bell
membership function
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Layer 3: Every node in this layer is a circle node such that
the i-th node calculates the ratio of the i-th rule’s firing
strength to the sum of all rules’ firing strengths as

�wwi ¼
wi

w1 þ w2

; i ¼ 1; 2: ð6Þ

Outputs of this layer can be called normalised firing
strengths.
Layer 4: Every node in this layer is a square node with a
node function that calculates the output for corresponding
rules weighted by its normalised firing strength such that

O4
i ¼ �wwifi ¼ �wwiðpixþ qiyþ riÞ; ð7Þ

where �wwi is the output of the previous layer (layer 3), and
fpi; qi; rig is the set of parameters which are called “con-
sequent parameters”.
Layer 5: The single node in this layer is a circle node that
computes the overall output by using the weighted aver-
age defuzzification method as

O5
i ¼ overall output ¼

X
i

�wwifi ¼
P

i wifiP
i wi

ð8Þ

Fig. 4 shows an example of fuzzy partitioning of the input
space in case of two inputs. Each of them is represented by
three membership functions. So the input space is parti-
tioned into nine fuzzy subspaces thus leading to nine fuz-
zy if-then rules in the ANFIS.

2.1 Hybrid Learning Algorithm adopted in ANFIS
reasoning

The hybrid learning algorithm used in ANFIS modelling
is the combination of Least-Squares estimation and gra-
dient descent method. The advantage of this combined al-
gorithm vs. the pure gradient descent is that the rapid con-
vergence to the global minimum is guaranteed whereas

the gradient descent is usually slow and likely to become
trapped in local minima [6, 7, 14].
For simplicity, assume that the adaptive network under
consideration has only one output,

output ¼ Fð~II; ð9Þ
where ~II is the set of input variables and S is the set of
parameters. If there exists a function H such that the com-
posite function H � F is linear in some of the elements of S,
then these elements can be identified by the least-squares
method [7]. Note that the Type-3 ANFIS satisfies this con-
dition rather well since it contains linear parameters in the
consequent part (consequent parameters).
Let S be the total parameters of the considered ANFIS
model which is decomposed into two sets as

S ¼ S1 � S2; ð10Þ
where� represents the direct sum. S1 and S2 are the sets of
premise and the consequent parameters, respectively. Re-
calling the sample ANFIS architecture given in Fig (2) and
assuming that the values of the premise parameters are
given, the overall output can be expressed as a linear com-
bination of the consequent parameters. More precisely, the
output f in Fig. (2) can be rewritten as

f ¼ w1

w1 þ w2

f1 þ
w2

w1 þ w2

f2 ¼

�ww1f1 þ �ww2f2 ¼ ð�ww1xÞp1 þ ð�ww1yÞq1 þ ð�ww1Þr1þ
ð�ww2xÞp2 þ ð�ww2yÞq2 þ ð�ww2Þr2; ð11Þ
which is linear in the consequent parameters
fp1; q1; r1; p2; q2; r2g. In this case, the formerly mentioned
functions Hð�Þ and Fð�; �Þ are the identity function and the
function of the fuzzy inference system, respectively.
Given the values of the elements of S1, one can write a
system of equations regarding the number P of training
data pairs in matrix form as

AX ¼ B; ð12Þ
where X is the unknown vector whose elements are the
parameters in S2. Let jS2j ¼ M, then the dimensions of
A, X and B are P�M, M � 1 and P� 1, respectively.
Since the number of training data is usually greater than
the number of unknowns, a least- squares estimate (LSE)
X̂of X is sought to minimise the squared error norm
kAX� Bk2

. The solution of the respective normal equa-
tions system is well known

X̂X ¼ ðATAÞ�1ATB ð13Þ
[8]. ðATAÞ�1AT s the pseudo-inverse of A when ATA is
non-singular. However, this methodology is expensive in
the computation of the matrix inverse and, moreover, it be-
comes ill defined if ATA is singular. Thus, a LSE based on
sequential formulas such as Kalman filtering could be re-
placed by the direct solution given in Eq. (13). This sequen-
tial method is more efficient, in particular when the number
of unknowns is small. Let aTi and bTi be the i-th row vector
of the matrix A and the i-th element of vector B, respec-
tively, then the so-called iterative solution reads as

Xiþ1 ¼ Xi þ Ciþ1aiþ1ðbTiþ1 � aTiþ1XiÞ
Ciþ1 ¼ Ci �

Ciaiþ1a
T
iþ1

Ci

1þaT
iþ1

Ciaiþ1
; i ¼ 0; 1; . . . ;P� 1

ð14Þ

Fig. 4: Corresponding fuzzy subspaces for a two-input Type-
3 ANFIS with 9 rules
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where Ci is the covariance matrix. The LSE of X is equal
to XP [5, 11, 12, 14]. The initial conditions in Eq. (14) are
X0 ¼ 0 and C0 ¼ cI, where c is a non-negative large num-
ber and I is an identity matrix with dimension M � M. In
case of multi-output fuzzy inference systems, Eq. (14) still
runs except that bTi is the i-th row vector of matrix B.
The hybrid learning algorithm used in ANFIS is com-
posed of a forward pass and a backward pass for each
epoch. In the forward pass, the premise parameters are
kept fixed and the functional signals coming from the in-
put data go forward to calculate each node output until the
matrices A and B in Eq. (12) are obtained. The vector of
the consequent parameters S2 is given by Eq. (14). Then
the functional signals keep going forward until the error
measure is calculated. In the backward pass, the error rates
(the derivatives of the error measure with respect to each
node output) are transferred from the output end towards
the input end using chain rule. The premise parameters S1

are then updated by the gradient method [7]. See Table 1
for a compilation.
For given fixed values of the premise parameters, the con-
sequent parameters thus found are guaranteed to be the
global optimum point in the S2 parameter space due to
the choice of the squared error measure. Accordingly,
the hybrid approach is much faster than the strict gradient
descent [7].

3 Numerical Examples

The determination of the geoid is in fact the interpolation
of the known geoid heights at the control points that are
located properly on the ground. However, the accuracy of
the geoid depends on the accuracy of the input data, i.e.
the accuracy and the density of the known geoid heights
rather than the method used for interpolation. Up to now,
different methods such as least squares collocation, multi-
parameter polynomial fitting, multi-quadratic interpola-
tion or weighted linear interpolation by different auto-
covariance functions have been widely employed for
this purpose. All these methods have been evaluated

only from the mathematical point of view, and have often
neglected the physical aspects of the geoid.
As an alternative to the classical approximation models,
adaptive network based fuzzy inference systems have
been used to approximate geoid heights as a function
of geographic coordinates u, k and ellipsoidal height h.
Therefore, the input-output pair consists of ellipsoidal
geographic coordinates u, k and h as input variables,
and geoid height N as single output variable. In this alter-
native approach, the selected data set has been subjected
to a normalisation procedure.
Established ANFISs are trained regarding the training
data set by the fore-mentioned hybrid algorithm until
the average root mean square errors for both training
and testing points are minimum. Optimal network config-
urations (number of fuzzy sets in each input variable space
thus leading the number of fuzzy rules) have been ob-
tained by trials. However, finding the optimal configura-
tion is very less complicated and time-consuming than
those in Artificial Neural Networks (ANN).

Izmir test area
Figure 5 shows the region of Izmir, covering the area of
approximately du ¼ 0:308 and dk ¼ 0:568. The geoid
height in the area of interest vary from 37.6 to 38.7 m.
The actual geoid heights are known in 310 points [1].
75 points out of these 310 points (in Fig. 5 marked
with squares) were randomly selected to form a test
set. The remaining 235 points (in Fig. 5 marked with filled
circles) have been used for training the ANFIS network. In
addition, all 310 points were used for the 5th order poly-
nomial fitting of the geoid at the region [1]. The training
procedure of ANFIS was performed using different num-
ber of fuzzy sets in each input variable which means that
different number of fuzzy rules were employed. The best
configuration was found to use three, five and one Gaus-
sian type fuzzy membership functions (fuzzy sets) for u, k
and h, respectively.
The efficiency of the ANFIS approximation was com-
pared to the results obtained by the 5th order polynomial
model. The performance of the ANFIS approximation was
tested at all 235 points and at 75 new points. The differ-
ences between actual geoid heights and approximated
values are summarised in Table 2. It can be seen that AN-
FIS approximation results are considerably better than the
results obtained by 5th order model.
Though the point density is high in the region, the average
accuracy (standard deviation) of the ellipsoidal heights
after the adjustment of the network has been found to
be � 3.5 cm. The accuracy of ellipsoidal heights vary
from � 2.8 cm to � 5.0 cm. Additionally, regarding the

Tab. 1: Two passes in the hybrid learning procedure for
ANFIS

– FORWARD PASS BACKWARD PASS

premise parameters fixed gradient descent

consequent parameters Least-squares estimate fixed

Signals Node outputs error rates

Tab. 2: Comparison between ANFIS and the fifth order approximations (Izmir)

Approximation type Min. [m] Max. [m] Mean [m] St. dev. [m] Correlation
Coefficient

235 points ANFIS � 0.111 0.098 0.000 0.030 0.98335

310 points 5th order � 0.156 0.122 0.000 0.044 0.96527

75 points ANFIS � 0.090 0.141 0.000 0.037 0.97222
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Fig. 5, the point distribution is not very convenient espe-
cially towards the Izmir gulf. Because of all these reasons,
achieved approximation accuracy by ANFIS could be as-
sumed to be perfect against those of classical approaches.

Baden-Württemberg test area
In this case the quality of ANFIS approximation was
tested over a larger area. In order to make a comparison

with a previous work done by using Artificial Neural Net-
works [9], from the Prof. Wenzel’s web page – GPS/Le-
velling derived geoid heights [15], 125 points were chosen
in the state of Baden-Württemberg, covering the area of
approximately Du ¼ 28 and Dk ¼ 38. Geoid heights in
this area vary from 46.6 to 50.2 m (Fig. 8).
In order to follow the same conditions with [9], 99 points
among 125 points were randomly selected for training the

Fig. 5: Actual geoid shape
in Izmir region

Fig. 6: ANFIS approxima-
tion of geoid in Izmir region
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network. The remaining 26 points has been used to form
the test set. In this case, optimal ANFIS architecture was
found to use four, three and one Gaussian type fuzzy mem-
bership functions (fuzzy sets) for u, k and h, respectively.
The quasigeoid shape of the test area obtained by ANFIS
approximation is shown in Fig. 9, and the differences be-
tween the actual quasigeoid shape and the quasigeoid AN-
FIS approximation are given in Fig. 10.
Some measures of the achieved ANFIS approximation
quality at the area were given together with the results
of [9] in the same sense in Table 3.
From Table 3, it is easy to conclude that the quality mea-
sures obtained for both training points and the new points
by ANFIS is twice superior to those obtained by ANFIS.
Looking at the Table 3, only the maximum error value
among 26 new points of ANFIS approximation is very
close to that of ANN approximation. However, when
the standard deviations are compared, one can say that
the amount of high fitting errors in ANFIS approach is

Fig. 7: Differences between
geoid and ANFIS approxi-
mation of geoid in Izmir
region

Fig. 8: Actual quasigeoid shape in Baden-Württemberg Fig. 9: ANFIS approximation of quasigeoid in Baden-Würt-
temberg

Fig. 10: Differences between quasigeoid and ANFIS ap-
proximation of quasigeoid in Baden-Württemberg
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considerably less than that of ANN approach. Achieved
accuracy also depends on the fine distribution of the
points in the region of Baden-Württemberg, which was
not met in region of Izmir.
The correlation coefficient value computed for the actual
geoid heights and those obtained by ANFIS approxima-
tion is again quite high and higher than those of ANN.
Correlation coefficient between ANFIS and actual geoid
heights computed with 125 points is shown in Fig. 11.

Conclusion

As formerly pointed out, our investigation focuses on the
application of Adaptive Network based Fuzzy Inference
System (ANFIS) on geoid height determination. To
make an objective conclusion, the outputs have been com-
pared with the results of different approximation methods,
i.e. high order polynomial fitting and artificial neural net-
works. The results of ANFIS approximation have been
found to be superior to all other methods.
While using ANFIS, one has to care some aspects such
that the number of parameters (including both premise
and consequent) in ANFIS have to be less than the number
of training data pairs. This is for avoiding the overfitting
phenomenon, which does not allow generalisation of the
established fuzzy inference system.

No matter which method is used, the efficiency of the ap-
proximation is limited at least with the accuracy of the
ellipsoidal heights obtained from the adjustment of the
network.
This means that it is not possible to achieve an approxi-
mation accuracy better than the accuracy of the ellipsoidal
heights. Considering this limitation, the standard devia-
tion obtained by ANFIS (for Izmir example) is very close
to the accuracy of adjusted ellipsoidal heights. In addition,
point distribution is also an important factor for the ap-
proximation quality.
Though it is not mentioned in the text, the convergence of
ANFIS is considerably faster than that of ANN.
The data in this study consist of ellipsoidal heights ob-
tained by GPS technique and orthometric heights obtained
by levelling. However, in case gravity data is available,
the fuzzy model could be extended by the inclusion of
gravity data set. For instance, the continuous gravity
data obtained from new satellite missions such as
GRACE, CHAMP etc. could be handled by ANFIS to
model the variations of geoid with respect to gravity var-
iations.
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Abstract

Fuzzy set theory and later developments in un-
certainty assessment have enabled us to construct
more precise models valid for our requirements.
In this research, Adaptive Network based Fuzzy
(or in some literature Adaptive Neuro-Fuzzy)
Inference System (ANFIS) has been successfully
used to approximate the geoid heights both in
Baden-Württemberg (Germany) and Izmir
(Turkey) regions and the established fuzzy ap-
proximation models have been tested on the test
points. The results have indicated its superiority
against all other conventional methods and made
it worthwhile to be considered in geodetic ap-
plications.

Keywords:

ANFIS � hybrid learning � fuzzy reason-
ing � input-output systems � membership func-
tion � geoid undulation

Zusammenfassung

Die Fuzzy Theorie und neue Bewertungen von
Unsicherheiten erlauben die präzise Modellie-
rung geodätischer Daten. In der vorliegenden
Arbeit wurden unter Verwendung des adaptiven
Network Fuzzy Inference System (ANFIS) Geo-
idhöhen in den Regionen Baden-Württemberg
(Deutschland) und in Izmir (Türkei) mit Erfolg
bestimmt und die Fuzzy Modelle mit vielen
Testpunkten überprüft. Damit wurde gezeigt,
dass das hier verwendete Verfahren bessere Er-
gebnisse als die herkömmlichen Verfahren liefert
und für die Lösung weiterer geodätischer Pro-
bleme in Betracht gezogen werden sollte.
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