
Mit der Bayes-Statistik werden Deformationen
durch ein Verfahren bestimmt, das aus zwei
Schritten besteht. Im ersten Schritt werden die
Koordinaten von Punkten eines Netzes in bezug
auf ein gewähltes Datum aus Messungen unter-
schiedlicher Natur und verschiedener Epochen
geschätzt. In einem zweiten Schritt werden die
Koordinatenänderungen durch weitere unbe-
kannte Parameter ausgedrückt. Drei unter-
schiedliche Verfahren werden vorgeschlagen.

1 Introduction

We assume that a series of measurements has been con-
ducted in a given network over a period of time. The ob-
ject of the measurements is monitoring variations in point
positions relative to a given fixed reference frame. As
such frames are generally not available, a stable subset
of points of the network is selected to define through
them the datum. Different kinds of measurements are con-
sidered at each epoch so that the variance compoments for
the observations at each epoch are estimated together with
the point positions. This establishes the first step of the
analysis.
The time series of estimated coordinates are subjected in a
second step to an additional analysis where the variations
of the coordinates with respect to the established datum
are modeled by means of a new set of parameters. Three
models are being considered in this second step: the first
one is the general linear model, the second one is the mod-
el of the free net adjustment (PAPO 1985; PAPO 1986; KOCH

and PAPO 1985) and the third one the well known model of
prediction and filtering, the so-called model of colloca-
tion. Prior information is introduced for the unknown
parameters of the first model. This leads to an analysis
which corresponds to the regularization of ill-posed
problems. The second model leaves the shape of the net-
work adjusted in the first step unchanged, while the third
model allows the introduction of system noise.
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Separation between step one and step two is done mostly
for convenience. There is a clear advantage if after com-
pleting step one the bulk of the measurements can be left
behind. This is particularly relevant, as a number of dif-
ferent models needs to be tested in step two. Of course,
both steps can be combined in one single step. It is shown
that under certain conditions both approaches give iden-
tical results.
Bayesian statistics is applied for the analysis. Bayesian
statistics has in comparison to traditional statistics the fol-
lowing advantage. By means of the posterior density func-
tion for the unknown parameters obtained from Bayes’
theorem the unknown parameters are not only estimated,
but also confidence regions for the unknown parameters
may be established or hypotheses for the parameters be
tested. Posterior density functions will therefore be given
for the variance components, for their ratios and for the
signals of collocation, see KOCH (2000, p. 132 and 174)
and KOCH and KUSCHE (2002).
The basic ideas of a two-step analysis of deformations
have been presented by PAPO and PERELMUTER (1993).
Here we augment their ideas by estimating variance com-
ponents in the first step and the regularization of the ma-
trix of normal equations of the linear model in the second
step. In addition the posterior density functions mentioned
above are given.
This paper is organized in six chapters. The next one gives
the analysis of the first step, while Chapter 3 presents the
linear model for the second step. Chapter 4 deals with the
model of the extended free net adjustment and Chapter 5
finally contains the model of prediction and filtering. For
each model the analysis in a one-step solution is derived
and the conditions for the equivalance of the one-step and
two-step solutions are given. The paper finishes with the
conclusions.

2 Analysis for the First Step

A network of points has been established to detect and
monitor motion and deformation of the earth’s crust in
a certain region. Measurements have been taken at o dif-
ferent time epochs to detect the movements of the points
of the network. The measurements at time epoch ti are
collected in the ni � 1 vector yi with i 2 f1; . . . ; og.
The vector yi is a random vector with covariance matrix
Dðyijr2

i Þ ¼ r2
i Pÿ1

i given by the known positive definite
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weight matrix Pi and the variance factor r2
i . Each obser-

vation vector yi may contain different kinds of observa-
tions, like GPS-measurements, distances of leveling so
that r2

i is considered an unknown random parameter.
The observation vectors yi and yj are assumed to be inde-
pendent for i 6¼ j.
On the basis of prior knowledge or by iterative hypothesis
testing, as shown for instance in KOCH (1985) and PAPO

and PERELMUTER (1989), the points of the network which
moved can be separated from the points which retained
their positions with respect to each other. The coordinates
of the moving points at epoch ti are collected in the ui � 1
vector bi with i 2 f1; . . . ; og. The vectors bi thus establish
a time series of coordinates. The coordinates of the re-
maining points, which did not move, are identical over
all epochs and are assembled in the uf � 1 vectors bf .
The u� 1 vector b of all unknown coordinates, which
in Bayesian analysis is a random vector, is thus given
with u ¼ R0

i¼1 ui þ uf by

b ¼ jb 01; b 02; . . . ; b 0o; b
0
f ; j
0 ð2:1Þ

Let the ni � ui matrix Xi with i 2 f1; . . . ; og be the coef-
ficient matrix for the observations yi related to the vector
bi and the ni � uf matrix Xfi with i 2 f1; . . . ; og be the
coefficient matrix for the observations yi connected
with the vector bf . These matrices are obtained if neces-
sary by a linearization.
Because of the unknown variance factors r2

i , the so-called
variance components, we obtain with ei being the errors of
yi the linear model with unknown variance components
given in the formulation of Bayesian statistics, see for in-
stance KOCH (2000, p. 145).

X1 0 . . . 0 Xf 1

0 X2 . . . 0 Xf 2

. . . . . . . . . . . . . . .
0 0 . . . X0 Xf 0

��������
��������
b1

b2

. . .
b0

bf

����������

����������
¼

y1 þ e1

y2 þ e2

. . .
y0 þ e0

��������
�������� ð2:2Þ

with

D

y1

y2

. . .
y0

��������
��������jr

0BB@
1CCA ¼ pPÿ1 ¼ r2

1V1 þ r2
2V2 þ . . .þ r2

0V0

ð2:3Þ

r ¼ jr2
1; r

2
2; . . . ; r2

0j

V1 ¼
Pÿ1

1 0 . . . 0

0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . 0

��������
��������;V2 ¼

0 0 . . . 0
0 Pÿ1

2 . . . 0

. . . . . . . . . . . .
0 0 . . . 0

��������
��������; . . .

V0 ¼

0 0 . . . 0

0 0 . . . 0
. . . . . . . . . . . .
0 0 . . . Pÿ1

0

��������
��������

We call X the coefficient matrix on the left-hand side of
(2.2) and obtain with (2.1), (2.3) and with

y ¼ jy 01; y 02; . . . ; y 00j
0; e ¼ e 01; e

0
2; . . . ; e 00j

0

instead of (2.2) the model in a abbreviated form

Xb ¼ yþ e with DðyjrÞ ¼ Pÿ1 ð2:4Þ
The normal equations for the estimate b̂b of the unknown
parameters b are given by

X 0PXb̂b ¼ X 0Py ð2:5Þ
We assume that rank X ¼ q < u with u being the number
of unknown parameters as defined above. Thus, uÿ q is
the rank deficiency due to the need for defining the datum.
As the matrix X 0PX of normal equations in (2.5) is sin-
gular, we employ a generalized inverse for the solution.
Let the rows of the ðuÿ qÞ � u matrix E

E ¼ jE1;E2; . . . ;E0;Ef j ð2:6Þ
contain a basis for the null space of the coefficient matrix
X, that is

XE 0 ¼ 0 ð2:7Þ
In a deformation analysis the points with did not move
establish the datum. This is accomplished by adding
the constraints.

Efbf ¼ 0 ð2:8Þ
to the normal equations (2.5), which leads to a symmetri-
cal reflexive generalized inverse ðX 0PXÞÿrs of the matrix of
normal equations, see for instance KOCH (1999, p. 186) or
KOCH (2000, p. 122). Using the fixed points only to define
the datum avoids changes of the coordinate system from
one time epoch to the next. However, in the observation
equations (2.2) or (2.4) the fixed points have identical co-
ordinates for all epochs which ensures a common coordi-
nate system for all epochs. Instead of a symmetrical re-
flexive generalized inverse ðX 0PXÞÿrs we therefore may
apply the pseudoinverse ðX 0PXÞþ of the matrix of normal
equations, which simplifies the analysis of the following
chapters. The pseudoinverse is obtained by imposing the
constraints

Eb ¼ 0 ð2:9Þ
Identical estimates are obtained with (2.8) and (2.9), if the
coordinates estimated for bi by (2.8) are introduced as ap-
proximate coordinates for the constraints (2.9), since the
pseudoinverse minimizes the sum of squares of the differ-
ences between the adjusted and the approximate coordi-
nates, see for instance KOCH (1999, p. 191).
By adding the constraints (2.9) to the normal equations
(2.5) we obtain in the expanded form

1
r2

1

X 01P1X1 0 . . . 1
r2

1

X 01P1Xf 1 E 01

0 1
r2

2

X 02P2X2 . . . 1
r2

2

X 02P2Xf 2 E 02
. . . . . . . . . . . . . . .

1
r2

1

X 0f 1P1X1
1
r2

2

X 0f 2P2X2 . . . R0
i¼1

1
r2

i

X 0fiPiXfi E 0f
E1 E2 . . . Ef 0

�����������

�����������
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b̂b1

b̂b2

. . .
b̂bf

k

����������

����������
¼

1
r2

1

X 01P1y1

1
r2

2

X 02P2y2

. . .
R0

i¼1
1
r2

i

X 0fiPiyi

0

�����������

�����������
ð2:10Þ

The estimate b̂b of the unknown parameters b follows in
the abbreviated form by

b̂b ¼ ðX 0PXÞ þ X 0Py ð2:11Þ
with ðX 0PXÞþ being the pseudoinverse of X 0PX. The cov-
ariance matrix Dðbjy1; . . . ; y0Þ ¼ R of the unknown para-
meters b is given by, see for instance KOCH (2000, p. 123),

Dðbjy1; . . . ; y0Þ ¼ ðX 0PXÞþ ¼ R ð2:12Þ
In the following chapters we will take the pseudoinverse
of this covariance matrix and obtain

ððX 0PXÞþÞþ ¼ Rþ ¼ X 0PX ¼ N ð2:13Þ
with N being the matrix of normal equations.
The unknown variance components r2

i with
i 2 f1; . . . ; og are estimated iteratively. One can either in-
troduce approximate values so that the variance compo-
nents are close to one and then iterate, or starting from
approximate values for the variance components one iter-
ates until the estimates converge. For the latter case the
estimate r̂r2

i of r2
i is computed by, see for instance

KOCH (2000, p. 146).

r̂r2
i ¼ êe 0i Piêei=ri for i 2 f1; . . . ; og ð2:14Þ

where êei denotes the vector of residuals obtained from
(2.2)

êei ¼ Xib̂bi þ Xfib̂bf ÿ yi ð2:15Þ
and ri the partial redundancy, that is the contribution of the
observation vector yi to the overall redundancy
nÿ ðuÿ qÞ of the model (2.2) with n ¼ R0

i¼1 ni being
the number of all ovservations y1; . . . ; y0 and u the number
of unknown parameters b. The partial redundancies ri are
computed by, see for instance KOCH (2000, p. 146).

ri ¼ trðWðr2
i ViÞ for i 2 f1; . . . ; 0g ð2:16Þ

with

W ¼ Pÿ PXðX 0PXÞþX 0P

When combining different kinds of observations like yi

and yj for i 6¼ j their weight relation t with

t ¼ r2
i =r

2
j for i 6¼ j ð2:17Þ

is of special interest. The posterior density function for t is
given by (KOCH and KUSCHE 2002)

pðtjyi; yjÞ / ð
1

t
Þ

ri
2
þ1ð 1

2t
êe 0i Piêei þ

1

2
êe 0j PjêejÞÿ

riþrj
2 ð2:18Þ

This density function leads to confidence intervals for the
weight relation t or to hypothesis tests for t.

3 Regularization for the Second Step

In the second step of tha analysis the variations of the co-
ordinates bi of the moving points with respect to the fixed
points bf are expressed by f unknown random parameters
s in the linear model

Bs ¼ b þ eb with DðbÞ ¼ r2
bR ð3:1Þ

where the u� f matrix B denotes the matrix of coeffi-
cients and r2

b the unknown variance factor of the covar-
iance matrix R for b from (2.12). We assume rank B ¼ f .
An example for Bs is a transformation, for instance an af-
fine transformation, with s containing the transformation
parameters and B the coefficients of the transformation.
An additional example for the unknown parameters s
are the coordinates of the points of the network at the in-
itial epoch and the veolocities of the coordinates. The ve-
locities of the stable points, of course, will be small for
such an example.
By introducing the estimates b̂b of the coordinates b from
(2.11) as observations and by taking the pseudoinverse of
the covariance matrixR according to (2.13) the estimates ŝs
of the unknown parameters s follow from the normal
equations

B 0NBŝs ¼ B 0Nb̂b ð3:2Þ
The matrix N is sinular, the matrix B 0NB of normal equa-
tions is therefore also singular although the matrix B has
full column rank. To remove the singularity prior informa-
tion is assumed for the vector s of unknown parameters by

EðsÞ ¼ l and Dðsjr2
lÞ ¼ r2

lPÿ1
l ð3:3Þ

In the following we will set l ¼ 0 since s contains the
corrections of approximates values. The weight matrix
Pl can be assumed to be diagonal and may be approxi-
mated by Pl ¼ I. The variance factor r2

l however, is con-
sidered as unknown random parameter.
Prior information may be treated as an additional obser-
vation equation with error vector el, see for instance KOCH

(2000, p. 119), so that we obtain with (3.3) instead of (3.1)

B
I

���� ����s ¼ b þ eb
lþ el

���� ���� ð3:4Þ

with

D
b
l

���� ����jr2
b; r

2
l

� �
¼ r2

b
R 0

0 0

���� ����þ r2
l

0 0

0 Pÿ1
l

���� ����
Since the variance factors r2

b and r2
l are considered as un-

known random parameters, the comparison with (2.2) and
(2.3) reveals that (3.4) is a linear model with the unknown
variance components r2

b and r2
l. As in (2.10) and (3.2) the

estimate ŝs of the unknown parameters s follows from

ð 1

r2
b

B 0NBþ 1

r2
l

PlÞŝs ¼
1

r2
b

B 0Nb̂b þ 1

r2
l

Pll ð3:5Þ

By introducing the regularization parameter k with

k ¼ r2
b=r

2
l ð3:6Þ
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and by setting

l ¼ 0 ð3:7Þ
as mentioned above, we obtain what is known as Tikho-
nov regularization

ðB 0NBþ kPlÞ̂ss ¼ B 0Nb̂b ð3:8Þ
It can be further simplified if we define Pl ¼ I as already
mentioned. The matrix of normal equations is now regular
due to the regularization which is controlled by the reg-
ularization parameter k. This parameter is estimated by
the estimates of the variance components according to
(2.14) with

k̂k ¼ r̂r2
b=r̂r

2
l ð3:9Þ

The posterior distribution for k is obtained by (2.18).
As already mentioned in the introduction, both steps of the
analysis may be combined in a single step. To show this,
we substiture (3.4) in (2.4) and find the model

XB
I

���� ����s ¼ yþ e
lþ el

���� ���� with D
y
l

���� ����jr� �
¼ Pÿ1 0

0 r2
lPÿ1

l

���� ����
ð3:10Þ

The normal equations for the estimate ŝs of the unknown
parameters s follow with

ðB 0X 0PXBþ 1

r2
l

PlÞŝs ¼ B 0X 0Pyþ 1

r2
l

Pll ð3:11Þ

Because of N ¼ X 0PX from (2.13) the estimate ŝs from
(3.5) agrees with ŝs from (3.11). However, the matrix P
in (3.11) contains according to (2.3) the variance compo-
nents r2

1; r
2
2; . . . ; r2

0. Their common factor appears in (3.5)
as r2

b . The estimates of the variance components in (3.5)
and (3.11) therefore have also to agree.

4 Model of the Extended Free Net Adjustment
for the Second Step

We now apply the model of the extended free net adjust-
ment (PAPO 1985; PAPO 1986). A u� 1 vector w of un-
known random parameters is therefore added to the linear
model (3.1) to give

wþ Bs ¼ b þ eb with DðbÞ ¼ r2
bR ð4:1Þ

The dimensions and the meaning of the matrix B and the
vector s are the same as in Chapter 3 and again rank B ¼ f .
The unknown parameter vector w can therefore be inter-
preted such that it contains the coordinates which are ob-
tained after applying the transformation Bs to the coordi-
nate vector b. By introducing the estimates b̂b and by tak-
ing the pseudoinverse of R as in Chapter 3 the estimates ŵw
of w and ŝs of s follow from the normal equations

N NB
B 0N B 0NB

���� ���� ŵw
ŝs

���� ���� ¼ Nb̂b
B 0Nb̂b

���� ���� ð4:2Þ

Since N is singular, the matrix of normal equations in (4.2)
is also singular. We will solve it by its pseudoinverse, as
shown in the following.

For a one-step solution we substitute (4.1) in (2.4) and ob-
tain

XjI;Bj w
s

���� ���� ¼ yþ e with DðyjrÞ ¼ Pÿ1 ð4:3Þ

Since B has full column rank, the matrices X and XjI;Bj
have the same rank deficiency. This is characteristic for
the extended free net approach. As a consequence the
shape of the adjusted free net does not change when add-
ing the transformation parameters s. This is the advantage
of the extended free net adjustment (KOCH and PAPO 1985).
The observation equations (4.3) represent a special model
of the exstended net adjustment. They lead with (2.11),
(2.13) and the identity in KOCH (1999, p. 51) to the normal
equations (4.2) because of

N NB
B 0N B 0NB

���� ���� ŵw
ŝs

���� ���� ¼ X 0Py
B 0X 0Py

���� ���� ¼ NNþX 0Py
B 0NNþX 0Py

���� ����
¼ Nb̂b

B 0Nb̂b

���� ����
so that the estimates ŝs and ŵw of the first step and the second
step agree.
A basis of the null space of the coefficient matrix in (4.3)
is given with E from (2.6) by (KOCH and PAPO (1985)

�EE 0 ¼ E 0 ÿB
0 I

���� ���� ð4:4Þ

The pseudoinverse of the matrix of normal equations in
(4.2) obtained by (4.4) gives the estimates ŝs and ŵw, see
for instance KOCH (1999, p. 186),

ŵw
ŝs

���� ����¼ N NB
B 0N B 0NB

���� ����þ E 0Eþ BB 0 ÿB
ÿB 0 I

���� ���� ÿ1 Nb̂b
B 0Nb̂b

���� ������
ð4:5Þ

By taking the inverse of the block matrix in (4.5), see for
instance KOCH (1999, p. 33), the explicit solutions for ŝs
and ŵw are obtained. Symmetrical reflexive generalized in-
verses may as well be computed by means of (4.4)

5 Model of Prediction and Filtering for
the Second Step

We add now system noise w to the model (3.1) to obtain

Bsþ w ¼ b þ eb with DðbÞ ¼ r2R ð5:1Þ
and consider w as a u� 1 random vector of unknown para-
meters. The unknown variance factor is called r2. The
model (5.1) is interpreted as a special model of prediction
and filtering (KOCH 2000, p. 135). It means that the f un-
known parameters s are the parameters of the trend. They
have the same meaning as in Chapter 3. The unknown ran-
dom noise w represents the signal. The u� f coefficient
matrix B is again assumed to be of full column rank. No
prior information is introduced for the parameters s, how-
ever, prior information is assumed for w by

EðwÞ ¼ 0 and Dðwjr2Þ ¼ r2Rw ð5:2Þ
with Rw being a known positive definite matrix.
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Under these assumptions the estimates ŝs and ŵw of s and w
are given by (KOCH 2000, p. 134– 137).

ŝs ¼ ðB 0ðRw þ RÞÿ1BÞÿ1B 0ðRw þ RÞÿ1b̂b ð5:3Þ

ŵw ¼ RwðRw þ RÞÿ1ðb̂b ÿ BŝsÞ ð5:4Þ
These estimates are identical with the estimates of the
model of prediction and filtering of traditional statistics.
If we set Rw ¼ 0 and take with (2.13) the pseudoinverse of
R, we obtain (3.2) instead of (5.3). Thus, introducing Rw

causes a special kind of regularization.
The Bayesiann approach gives in addition the posterior
density functions for s and w defined by the multivariate
t-distributions

sjb̂b � tð̂ss; b0ðB 0ðRw þ RÞÿ1BÞÿ1=p0; 2p0Þ ð5:5Þ

wjb̂b � tðŵw; b0Rww=p0; 2p0Þ ð5:6Þ
with

Rww ¼ Rw ÿ RwðRw þ RÞÿ1Rw þ ðRw ÿ RwðRw þ RÞÿ1RwÞ
NBðB 0NBÿ B 0NðRw ÿ RwðRw þ RÞÿ1RwÞNBÞÿB 0N

ðRw ÿ RwðRw þ RÞÿ1RwÞ ð5:7Þ
These posterior density functions lead to confidence re-
gions and hypothesis tests for s and w. The covariance ma-
trices of s and w follow with

Dðsjb̂bÞ ¼ r̂r2ðB 0ðRw þ RÞÿ1BÞÿ1 ð5:8Þ

Dðwjb̂bÞ ¼ r̂r2Rww ð5:9Þ
with Rww from (5.7) and with r̂r2 being the Bayes estimate
of the variance factor r2 given by

r̂r2 ¼ b0=ðp0 ÿ 1Þ ð5:10Þ
The constants b0 and p0 are derived in (KOCH 2000, p. 132,
136) based on the prior information Eðr2Þ ¼ r2

p and
Vðr2Þ ¼ Vr2 for the variance factor r2. However, no prior
information for r2 may also be introduced by

r2
p ! 0 and 1=Vr2 ! 0 ð5:11Þ

The constants b0 and p0 are then determined by

b0 ¼ X=2 ð5:12Þ

p0 ¼ ðuþ 4Þ=2 ð5:13Þ
with u being the number of coordinates in b and X the
weighted sum of squares of the residuals of model
(5.1) together with (5.2)

X ¼ ðb̂b ÿ BŝsÞ 0ðRw þ RÞÿ1RwðRw þ RÞÿ1ðb̂b ÿ BŝsÞþ
ðb̂b ÿ Bŝsÿ ŵwÞ 0Nðb̂b ÿ Bŝsÿ ŵwÞ ð5:14Þ
We obtain the Bayes estimate r̂r2 from (5.10) with

r̂r2 ¼ X=ðuþ 2Þ ð5:15Þ
To derive the one-step solution for the model of prediction
and filtering, (5.1) and (5.2) are substituted in (2.4) so that
the model follows

XBsþ Xw ¼ yþ e with DðyjrÞ ¼ Pÿ1 and DðwÞ ¼ Rw

ð5:16Þ

Again, no prior information is introduced for s and prior
information for w. The estimate ŝs of s therefore follows
with (KOCH 2000, p. 134)

ŝs¼ðB 0X 0ðXRwX 0þPÿ1Þÿ1XBÞÿ1B 0X 0ðXRwX 0þPÿ1Þÿ1y

ð5:17Þ
To show under which conditions (5.3) agrees with (5.17),
we apply the matrix identity, see for instance KOCH (1999,
p. 34)

ðXRwX 0 þ Pÿ1Þÿ1 ¼ Pÿ PXðRÿ1
w þ X 0PXÞÿ1X 0P

ð5:18Þ
and obtain

X 0ðXRwX 0 þ Pÿ1Þÿ1X ¼ X 0PX ÿ X 0PXðRÿ1
w þ

X 0PXÞÿ1X 0PX ð5:19Þ
At least for a regular matrix X 0PX of normal equations we
obtain by applying (5.18) to the right-hand side of (5.19)

X 0ðXRwX 0 þ Pÿ1Þÿ1X ¼ ðRw þ RÞÿ1 ð5:20Þ
With the result we find instead of (5.17)

ŝs ¼ ðB 0ðRw þ RÞÿ1BÞÿ1B 0X 0ðXRwX 0 þ Pÿ1Þÿ1y

ð5:21Þ
and with (2.4) instead of (5.3)

ŝs ¼ B 0ðRw þ RÞÿ1BÞÿ1B 0X 0ðXRwX 0 þ Pÿ1Þÿ1ðyþ êeÞ
ð5:22Þ

Thus, the estimates (5.3) and (5.17) agree, if êe ¼ 0. How-
ever, this condition cannot be fulfilled in case of redun-
dant observations.

6 Conclusions

Analysis of deformations in two consecutive steps is to be
preferred over single-step procedures because it provides
a clear-cut separation in terms of models and estimation.
Determining the variance components of each individual
batch of measurements is an essential part of the analysis
at step one. This is particularly important in deformation
analysis as measurements of different epochs may differ
significantly in type and quality.
When applying the regularization approach at the second
step of the analysis the estimates ŝs are computed itera-
tively from (3.8) because the variance components
have to be estimated iteratively from (3.9). If we set
Pl ¼ I in (3.8), we do not have to specify anything in ad-
vance about the unknown parameters s. If we use the mod-
el of the extended free net adjustment, the shape of the net
adjusted in the first step does not change when adding the
additional unknown parameters s. In order to apply at the
second step the approach of prediction and filtering, we
have to specify the covariance matrix Rw if the system
noise in (5.2) in order to estimate the unknown parameters
s, but without iterations. The approach finally chosen for
the second step should depend on the particular applica-
tion and on the availability of prior information.
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Abstract

Deformations are detected in a two-step proce-
dure using Bayesian statistics. At the first step the
coordinates of points in a network are determined
with respect to a chosen datum from measure-
ments of different kinds at different epochs. The
variance component of the measurements at each
epoch is estimated together with the respective
point coordinates. At the second step of the
analysis the estimated variations of the point
coordinates are modeled by a new set of unknown
parameters. Three different approaches are
proposed:

a) The regularization approach, where the sin-
gular matrix of normal equations is regularized.
The posterior distribution of the regularization
parameter is given.

b) The extented free net adjustment, where in-
troducing the additional parameters does not
change the shape of the network adjusted in the
first step.

c) The prediction and filtering approach, where
unknown system noise is introduced. Posterior
distributions for the unknown parameters and
for the system noise are given.

The choise of the approach will depend on the
particular application. The above two steps can
be combined into a single step so that the esti-
mation of the parameters of the second step fol-
lows directly. To obtain identical results with the
two-step solution certain conditions have to be
observed.

Zusammenfassung

Mit der Bayes-Statistik werden Deformationen
durch ein Verfahren bestimmt, das aus zwei
Schritten besteht. Im ersten Schritt werden die
Koordinaten von Punkten eines Netzes in bezug
auf ein gewähltes Datum aus Messungen unter-
schiedlicher Natur und verschiedener Epochen
geschätzt. In einem zweiten Schritt werden die
Koordinatenänderungen durch weitere unbe-
kannte Parameter ausgedrückt. Drei unter-
schiedliche Verfahren werden vorgeschlagen:

a) die Regularisierung, bei der die singuläre
Normalgleichungsmatrix regularisiert wird. Die
Posteriori-Verteilung für den Regulatisierungs-
parameter wird angegeben.

b) die erweiterte freie Netzausgleichung, bei der
die Einführung der zusätzlichen unbekannten
Parameter die Gestalt des im ersten Schritt
ausgeglichenen Netzes nicht ändert.

c) die Prädiktion und Filterung, für die unbe-
kanntes Systemrauschen eingeführt wird. Die
Posteriori-Verteilungen für die unbekannten
Parameter und das Systemrauschen werden an-
gegeben.

Die Wahl des Verfahrens wird von der jeweiligen
Anwendung abhängen. Die erwähnten beiden
Schritte können zu einem Schritt zusammenge-
faßt werden, so daß die Parameter des zweiten
Schritts direkt geschätzt werden. Um identische
Ergebnisse mit der Lösung in zwei Schritten zu
erhalten, müssen gewisse Bedingungen erfüllt
sein.
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