Numerical approximation of large industrial excavations

Part two: Analysis of Software

Abstract

The second part of the paper concerns numerical approximation of analysed surfaces by three algorithms: CA LCPAR, CA LCA BC, and CALCH. C alculations were carried out in FORTRA N language. The suggested calculation provides sufficient precision for mathematical modelling of the large industrial excavations.

1 Introduction

The considered surfaces are divided into "calculation zones". Descriptions of zones division and generation of triangles net are presented in [10].
System calculations of the mathematical approximation of large industrial excavation surfaces are formulated in three algorithms: CALCPAR, CALCABC, and CALCH .
A Igorithm CA LCPA R involves calculation of curvature parameters. The second algorithm CA LCA BC computes the polynomial coefficients A T, BT, CT, and double surface area DELTA for all generated triangles from given "calculation zone". The third analysed algorithm CA LCH calculates the elevations of checking points, accordance with presented theory in part one of this paper.
A t the stage of automatic generation [10] the codes K B have been ascribed to the sides of triangles. If there is $\mathrm{K} B=1$ (comparable with table on fig. 1), for the sides located inside "calculation zone", curvature parameters are handed over from considered triangle to adjacent one. In such a case, parameters are calculated for the elevation function of higher degree. Parameters are notated as $P_{i}{ }^{m}$ and $P_{j}{ }^{n}$ or PAR.
On the edge of "calculation zone" the codes K B of sides in generated triangles were assumed equal to 2 . If the $K B=2$ (fig. 1), then curvature parameters of the sides are equal to zero and it means parameters PAR $=0$.
In the algorithm CA LCPAR for sides with codes $K B=1$ the curvature parameters of:

- current triangle IE LEM,
- its side IBOK, and
- current adjacent triangle IE L 2
are calculated at the same time.

NPE

Number of triangle	Number of points in triangle		
	1	2	3
	NPE $(1,1)=1$	NPE $(1,2)=2$	NPE $(1,3)=3$
2	4	3	2
	$\mathrm{NPE}(2,1)=4$	$\mathrm{NPE}(2,2)=3$	$\mathrm{NPE}(2,3)=2$
3	5	4	2
	$\mathrm{NPE}(3,1)=5$	$\mathrm{NPE}(3,2)=4$	$\mathrm{NPE}(3,3)=2$

Number of triangle	Number of sides in triangle		
	IBOK $=\mathbf{1}$	IBOK $=\mathbf{2}$	IBOK $=\mathbf{3}$
1	1	2	2
2	1	1	2
3	1	2	2

NEL

Number of triangle	Number of sides in triangle		
	IBOK $=\mathbf{1}$	IBOK $=\mathbf{2}$	IBOK $=\mathbf{3}$
1	$\Delta 2$	0	0
2	$\Delta 1$	$\Delta 3$	0
3	$\Delta 2$	0	0

Fig. 1: M atrices of numbering the points in triangle (NPE), code sides (K B), and numbering of adjacent triangles (NEL).

2 Analysis of software

C alculations of curvature parameters

A lgorithm CALCPAR

Input parameters:
$X, Y, H-s p a c i a l$ co-ordinates from generated triangles net,
NPE - matrices numbering of points in generated triangles,
NELEM - quantity of generated triangles,
K B - matrices codes of sides in generated triangles,

NEL - matrices numbering of adjacent generated triangles.
5|6|7
PROGRAM CALCPAR (X,Y,H,NPE,NELEM, KB,NEL,A,B,C,DELT,PAR)
REALX(500,3),Y(500,3),H(500,3),XT(3),YT((3), * A (3) , BT(3)

R E A L CT(3),A (500,3),B(500,3),C(500,3),PA R *(500,3),D E LT(500) INTEGER NPE $(500,3), \operatorname{KB}(500,3), N E L(500,3)$, *NP(3)
DO 3 IELEM = 1,NELEM
DO 1 IBOK = 1,3
$X T(I B O K)=X(N P E(I E L E M, I B O K))$
$1 \quad \mathrm{YT}(I B O K)=Y(N P E(I E L E M, I B O K))$
CALL CALCABC (XT,YT,AT,BT,CT,DELTA) DO $2 \mid B O K=1,3$
A (IELEM,IBOK) =AT(IBOK)
$B(I E L E M, I B O K)=B T(I B O K)$
$2 \mathrm{C}(I E L E M, I B O K)=C T(I B O K)$
3 DELT(IELEM) =DELTA
In the algorithm CALCPAR loop DO 3 runs successively by quantity of triangles NE LEM, which has been generated. Internal loop DO 1 runs by numbers of sides in triangles. For example, in assumed triangle number IELEM = 1 we obtain instructions:
$X T(1)=X(\operatorname{NPE}(1,1)) \quad ; \quad Y T(1)=Y(\operatorname{NPE}(1,1))$
$X T(2)=X(N P E(1,2)) \quad ; \quad Y T(2)=Y(N P E(1,2))$
$X T(3)=X(\operatorname{NPE}(1,3)) \quad ; \quad Y T(3)=Y(N P E(1,3))$
numbers of sides in triangle

Next subroutine CALCABC calculates coefficients $A T, B T, C T$, and double surface area DELTA of a given triangle. A ll calculated variables are substituted to global matrices A, B, C, and $D E L T$.

DO 7 IELEM $=1$, NELEM
DO 7 IBOK = 1,3
IF (KB(IELEM,IBOK).EQ.0) GOTO 7
IF (KB(IELEM,IBOK).EQ.1) GOTO 4 IF(ABS(KB(IELEM,IBOK)).EQ.2) PAR(IELEM, $\mid B O K)=0$
GOTO 7
4 IEL2 $=$ NEL(IELEM, IBOK)
DO5 I = 1, 3
5 IF(NEL(IEL2,I).EQ.IELEM) IBOK2=I
NI = NPE (IELEM,IBOK)
$N J=N P E(I E L 2, I B O K 2)$
$B I=B(I E L E M, I B O K)$
$C I=C(I E L E M, I B O K)$
$B J=B(I E L 2, I B O K 2)$
$C J=C(I E L 2, I B O K 2)$
$\mathrm{HJI}=\mathrm{H}(\mathrm{NJ})-\mathrm{H}(\mathrm{NI})$
$X X=X(N I)-X(N J)$
$Y Y=Y(N I)-Y(N J)$
ODLIJ $=\operatorname{SQRT}(X X * * 2+Y Y * * 2)$
$X X=X X / O D L I J$
$Y Y=Y Y / O D L I J$

SIX $=0$
SIY $=0$
SJ $X=0$
SJ $Y=0$
DO6 I = 1,3
SIX $=$ SIX $+\mathrm{B}(I E L E M, I) * H(N P E(I E L E M, I))$
SIY $=$ SIY + C(IELEM ,I) $*$ H(NPE (IELEM ,I))
SJX $=$ SJ $X+B(I E L 2, I) * H(N P E(I E L 2, I))$
SJY $=$ SJY $+\mathrm{C}(I E L 2, I) * H(N P E(I E L 2, I))$
6 CONTINUE
SIX $=$ SIX $* X X$
SIY $=$ SIY * Y Y
SJ $X=$ SJ $X * X X$
$\mathrm{SJ} \mathrm{Y}=\mathrm{SJ} \mathrm{Y} * \mathrm{Y} Y$
SM $=(S I X+S I Y) / D E L T(I E L E M)$
SN $=(S J X+S J Y) / D E L T(I E L 2)$
$B C I=(B I * X X+C I * Y Y) / D E L T(I E L E M)$
$B C J=(B J * X X+C J * Y Y) / D E L T(I E L 2)$
$D=B C I / B C J$
$E=S M / B C J$
$F=-S N / B C J$
PAR(IELEM,IBOK) $=-\mathrm{D} *(\mathrm{E}+\mathrm{F}) /(1+\mathrm{D} * \mathrm{D})$
PAR (IEL2,IBOK 2) = PAR (IELEM,IBOK) *D +
*E + F
$K B(I E L E M, I B O K)=0$
$K B(I E L 2, I B O K 2)=0$
7 CONTINUE
RETURN
END
A s before, similarly the loops IE LEM $=1$, NE LEM and IBOK =1,3 run successively by quantity of generated triangles and sides. Loop DO 7 calculates parameters of curvature on the base of described theory in the first part of this paper.
Three logical instructions check coding of:

- sides which lie opposite to considering apexes (IF (KB(IELEM,IBOK).EQ.0)),
- common side of two triangles (IF (KB(IELEM, (B OK).EQ.1)),
- sides on the edge of a given zone (IF (ABS(KB(IELEM , IBOK)).EQ.2)).
E xample of coding system $K B$ is presented in table 1.
Next, algorithm CA LCPA R determines directional vector on the base of two points from two adjacent triangles. Then directional vector is normalising.
Co-ordinates of unit vector have the following form:
$V_{u n i t}\left(\frac{V_{x}}{\sqrt{V_{x}^{2}+V_{y}^{2}}}, \frac{V_{y}}{\sqrt{V_{x}^{2}+V_{y}^{2}}}\right)$
In the first part of this paper, parameters of elevation function have the following form:

$$
\begin{align*}
& P_{i}^{m}=\frac{T_{i}^{m}\left(S_{j}^{n}-S_{i}^{m}\right)}{\left(T_{j}^{n}\right)^{2}+\left(T_{i}^{m}\right)^{2}} \tag{1}\\
& P_{j}^{n}=\frac{S_{j}^{n}-S_{i}^{m}}{T_{j}^{n}}\left(\frac{\left(T_{i}^{m}\right)^{2}}{\left(T_{j}^{n}\right)^{2}+\left(T_{i}^{m}\right)^{2}}-1\right) \tag{2}
\end{align*}
$$

In order to simplify the calculations we shall transform formula (1) and (2).
A fter transformation of formula (1) we obtain:
$P_{i}^{m}=\frac{-\frac{T_{i}^{m}}{T_{j}^{n}}\left(\frac{S_{i}^{m}}{T_{j}^{n}}+\frac{S_{j}^{n}}{T_{j}^{n}}\right)}{1+\left(\frac{T_{i}^{m}}{T_{j}^{n}} \frac{T_{i}^{m}}{T_{j}^{n}}\right)}$
W e assume:
$D=\frac{T_{i}{ }^{m}}{T_{j}^{n}} ; E=\frac{S_{i}^{m}}{T_{j}^{n}} ; F=\frac{S_{j}^{n}}{T_{j}^{n}}$
The final form of formula (1) in subroutine CA LCPA R is the following:
$\operatorname{PAR}($ IELEM,$I B O K)=\frac{-D(E+F)}{1+D^{*} D}$
In the first part of this paper following formulas have been used:
$T_{i}^{m}=\frac{b_{i}^{m}}{\Delta^{m}} V_{x}+\frac{c_{i}^{m}}{\Delta^{m}} V_{y}$
$T_{j}^{n}=\frac{b_{j}^{n}}{\Delta^{n}} V_{x}+\frac{c_{j}^{n}}{\Delta^{n}} V_{y}$
W e assume the following notations:
$B C I=T_{i}^{m} ; B I=b_{i}^{m} ; C I=c_{i}^{m} ; D E L T($ IELEM $)=\Delta^{m}$ $B C J=T_{j}^{n} ; B J=b_{j}^{n} ; C J=c_{j}^{n} ; D E L T\left(\right.$ IEL 2) $=\Delta^{n}$
$X X=V_{x} ; Y Y=V_{y}$
The final forms of formulas (3) and (4) in considered subroutine are as follows:
$B C I=\frac{B I * X X+C I * Y Y}{D E L T(I E L E M)} ;$
$B C J=\frac{B J^{*} X X+C J * Y Y}{D E L T(I E L 2)}$
In the first part of this paper the following formulas have been considered:
$S_{i}^{m}=\frac{1}{\Delta^{m}} \sum_{i=1}^{i=3} z_{i}^{m}\left(b_{i}^{m} V_{x}+c_{i}^{m} V_{y}\right)$
$S_{j}^{n}=\frac{1}{\Delta^{n}} \sum_{j=1}^{j=3} z_{j}^{n}\left(b_{j}^{n} V_{x}+c_{j}^{n} V_{y}\right)$
Taking into account notations in analysed subroutine we obtain:

$$
\begin{aligned}
& S M=S_{i}^{m} ; S N=S_{j}^{n} \\
& H\left(\text { NPE }(\text { IELEM }, I)=Z_{i}^{m}\right. ; \\
& B(\text { IELEM }, I)=b_{i}^{m} ; \\
& C(\text { IELEM }, I)=c_{i}^{m} ; \\
& B(\text { IEL } 2, I)=b_{j}^{n} \\
& C(\text { IEL } 2, I)=c_{j}^{n}
\end{aligned}
$$

From loop D 06 I = 1,3 we obtain:
SIX $=\operatorname{SIX}+B(\text { IELEM }, I)^{*} H($ NPE $($ IELEM,$I))=\sum_{i=1}^{i=3} b_{i}^{m} z_{i}^{m}$
$S I Y=S I Y=C($ IELEM,$I) * H(N P E($ IELEM,$I))=\sum_{i=1}^{i=3} c_{i}^{m} z_{i}^{m}$

$$
\begin{aligned}
& S J X=S J X+B(\text { IEL 2,I }) * H(N P E(\text { IEL 2,I }))=\sum_{i=1}^{i=3} b_{j}^{n} z_{j}^{n} \\
& S J Y=S J Y+C(I E L ~ 2, I) * H(N P E(\text { IEL 2,I }))=\sum_{i=1}^{i=3} c_{j}^{n} z_{j}^{n}
\end{aligned}
$$

The final form of formulas (5) and (6) in algorithm CA LCPA R are as follow:
$S M=\frac{S I X+S I Y}{D E L T(I E L 2)}$
$S N=\frac{S J X+S I Y}{D E L T(I E L 2)}$
The final form of formula (2) in algorithm CA LCPAR is following:
PAR (IEL2,IBOK 2) = PAR (IELEM,IBOK) *D +E +F B efore calculation of parameters PA R for successively sides of triangles or for next triangles IE LEM , we check by means of instructions KB(IELEM,IBOK) and K B (IEL2,IBOK2) if code of sides are equal to zero. By this way we prevent calculations of parameters PAR once more.
O utput parameters from algorithm CA LCPA R:
A, B, C - coefficients of linear polynomial from considered triangles,
DELT - double surface area of considered triangles,
PAR - parameters of curvature.

C alculation of coefficients A, B, C, and parameter DELTA in analysed triangle. A lgorithm CA LCABC

I nput parameters:
$\mathrm{XT}, \mathrm{Y} \mathrm{T}$ - co-ordinates of points of triangles, which have been generated,
$5|6| 7$
SUBROUTINE CALCABC (XT,YT,AT,BT,CT, DELTA)
REALXT(3), YT(3),AT(3),BT(3),CT(3)
$\mathrm{X} 1=\mathrm{X} T(1)$
$X 2=X T(2)$
$X 3=X T(3)$
$Y 1=Y T(1)$
$Y 2=Y T(2)$
$Y 3=Y T(3)$
$A T(1)=X 2 * Y 3-X 3 * Y 2$
$B T(1)=Y 2-Y 3$
$C T(1)=X 3-X 2$
$\mathrm{A} T(2)=X 3 * Y 1-X 1 * Y 3$
$B T(2)=Y 3-Y 1$
$\mathrm{CT}(2)=\mathrm{X} 1-\mathrm{X} 3$
$A T(3)=X 1 * Y 2-X 2 * Y 1$
$B T(3)=Y 1-Y 2$
$C T(3)=X 2-X 1$
DELTA $=X 2 * Y 3+X 1 * Y 2+X 3 * Y 1-X 2 * Y 1-X 3 *$
Y 2 -X 1^{} Y 3
RETURN
END

In order to calculate coefficients A T, BT,CT, we have to solve the set of equations from theory presented in the first part of this paper. For example, assumed set of equations at apex 1 of triangle have the following form:
$a_{1}+b_{1} x_{1}+c_{1} y_{1}=1$
$a_{1}+b_{1} x_{2}+c_{1} y_{2}=0$
$a_{1}+b_{1} x_{3}+c_{1} y_{3}=0$
From this set of equations we obtain:
$a_{1}=x_{2} y_{3}-x_{3} y_{2} ; \quad b_{1}=y_{2}-y_{3} ; \quad c_{1}=x_{3}-x_{2}$

$$
W=x_{2} y_{3}+x_{1} y_{2}+x_{3} y_{1}-x_{2} y_{1}-x_{3} y_{2}-x_{1} y_{3}
$$

"W" is equal to parameter DELTA. Similarly from the set of equations at apexes 2 and 3 we shall calculate coefficients: a_{2}, b_{2}, c_{2} and a_{3}, b_{3}, c_{3}.
O utput parameters from subroutine CA LCA BC:
$A T, B T, C T$ - coefficients of linear polynomial from analysed triangles,
DELTA - double surface area of analysed triangles.

C alculations of the heights of the points in the generated triangles notated as IE L. A Igorithm CA LCH

I nput parameters:
$X, Y, H-$ spacial co-ordinates in apexes of triangle which has been generated.
A , B , C - coefficients of linear polynomial,
NPE - matrice of points in triangle,
PAR - parameters of curvatures,
DELT - double surface area of considered triangle,
IEL - number of considered triangle.
In algorithm CA LCH are use notations L 1,L 2, L 3, which overlap with notations from the first part of this paper and specifically concern the following set of equations:
$L_{1}=\left(a_{1}+b_{1} x+c_{1} y\right) / 2 \Delta$
$L_{2}=\left(a_{2}+b_{2} x+c_{2} y\right) / 2 \Delta$
$L_{3}=\left(a_{3}+b_{3} x+c_{3} y\right) / 2 \Delta$
Into variables W 1,W 2,W 3 are have substituted heights from apexes of a given triangle with number IEL, and into variables P1, P2, P3 the parameters of curvatures for sides of triangle are substituted.
$5|6| 7$
PROGRAM CALCH (X,Y,H,A,B,C,NPE,PAR, DELT,IEL,W)
REAL H(500),A $(500,3), B(500,3), C(500,3), D E L T$ (500), PA R $(500,3)$

INTEGER NPE $(500,3)$
REAL L1,L2,L3

```
L 1 = (A (IE L,1)+B (IE L,1)*X +C(IEL,1)*Y )/
*DELT(IEL)
L2 = (A (IE L ,2)+B (IEL,2)*X +C(IEL,2)*Y )/
*DELT(IEL)
L 3 = (A (IE L , 3) +B (IE L ,3)*X +C(IEL ,3)*Y )/
*DELT(IEL)
W1=H(NPE(IEL,1))
W2 =H(NPE (IEL,2))
W 3 = H(NPE (IEL,3))
```

Table 1: H eights of measured points and values of relative errors

N umber of Point	$\begin{gathered} H R \\ \text { (M etre) } \end{gathered}$	HL (M etre)	HN (M etre)	$\begin{gathered} \delta_{L N} \\ (\%) \end{gathered}$	$\begin{gathered} \delta_{N R} \\ (\%) \end{gathered}$
1	400.09	400.31	400.11	0.05	0.00
2	400.42	400.49	400.36	0.03	0.02
3	401.03	400.89	401.01	0.03	0.00
4	401.24	401.02	401.19	0.04	0.01
5	402.33	402.41	402.29	0.03	0.01
6	402.38	402.50	402.37	0.03	0.00
7	402.02	402.06	402.17	0.03	0.04
8	402.93	403.18	402.98	0.05	0.01
9	402.33	402.46	402.29	0.04	0.01
10	399.05	399.28	399.02	0.07	0.01
11	400.03	399.82	400.02	0.05	0.00
12	398.23	398.31	398.21	0.03	0.01
13	399.67	399.54	399.59	0.01	0.02
14	399.49	399.58	399.56	0.01	0.02
15	399.87	400.06	399.83	0.06	0.01
16	401.43	401.58	401.44	0.04	0.00
17	401.29	401.12	401.32	0.05	0.01
18	401.98	401.81	401.95	0.04	0.01
19	402.19	402.44	402.22	0.06	0.01
20	402.23	402.01	402.29	0.07	0.02
21	402.26	402.09	402.30	0.05	0.01
22	401.87	401.45	402.03	0.14	0.04
23	401.33	401.24	401.31	0.02	0.00
24	402.31	402.56	402.28	0.07	0.01
25	401.89	401.78	401.92	0.04	0.01
26	401.67	401.54	401.66	0.03	0.00
27	401.72	401.79	401.78	0.00	0.02
28	398.83	399.01	398.76	0.06	0.02
29	397.44	397.31	397.48	0.04	0.01
30	398.89	398.56	398.94	0.03	0.01
31	398.43	398.12	398.35	0.06	0.02
32	399.32	399.61	399.39	0.06	0.02
33	400.11	399.83	400.02	0.05	0.02
34	402.56	402.91	402.63	0.07	0.02
35	402.97	403.24	402.92	0.08	0.01
36	402.86	402.99	402.81	0.05	0.01
37	403.01	402.87	403.14	0.07	0.03
38	403.05	403.43	403.21	0.05	0.04
39	403.34	403.41	403.30	0.03	0.01
40	403.78	403.97	403.81	0.04	0.01

```
P1 = PA R (IE L,1)
P2 = PA R (IEL,2)
P3 = PA R (IE L,3)
W=L 1*W 1+L 2*W 2+L 3*W 3+P1*L 1*(L2+L 3)+
*P2*L2*(L 1+L 3)+P3*L 3*(L 1+L 2)
RETURN
END
```

In the first part of this paper the equation of elevation function has been assumed in the following form:

$$
\begin{aligned}
z= & L_{1} Z_{1}+L_{2} Z_{2}+L_{3} Z_{3}+P_{1} L_{1}\left(L_{2}+L_{3}\right)+ \\
& P_{2} L_{2}\left(L_{1}+L_{3}\right)+P_{3} L_{3}\left(L_{1}+L_{2}\right)
\end{aligned}
$$

It has related to calculation of height W in the given triangle.
O utput parameter from algorithm CA LCH:
W - heights of points in a given triangle.

3 Testing of proposed software and conclusions

The practical calculation based on the fragment of industrial excavation. M easurement on this area has been performed with the use electronic tacheometer TC 2003. The obtained numbers of measured points are from 29 to 43 on the area of one hectare. On the considered area, additionally measurement has been performed, which involve 40 arbitrary measurement points. In consequence, the testing of presented in this paper software is based on 40 points. A fter generation of the net of triangles the mathematical approximation of measured zone has been performed by means of the elevation function of the first and of the second degree. The table 1 presents results of calculation in 40 measurement points.
In this table the following variables are introduced:
HR - analytically calculated heights,
HL - calculated heights by means of shape function of the first degree,
HN - calculated heights by means of shape function of the second degree,
δ - values of relative errors of measurement points,
C alculated relative errors $\delta_{N R}$ are related to heights $H R$, which are assumed to be accurate.
Then: $\delta_{\text {NR min }}=0.00 \%, \delta_{\text {NR max }}=0.04 \%$, and $\delta_{\text {NRaverage }}$ for 40 measurement points $=0.01 \%$. In consequence we can assume that calculated heights H N are accurate as well.
Table 1 shows that by application of shape function of the second degree we obtain the increase of approximation accuracy of analysed surface in relation to linear function. The range of increased accuracy is from $\delta_{\mathrm{LN} \text { min }}=0.0 \%$ to $\delta_{\mathrm{LN} \text { max }}=0.14 \%$, and $\delta_{\mathrm{LNaverage}}$ for 40 measurement points $=0.05 \%$.
The non-linear shape function adopted in this paper, which use parameters related to adjacent triangles al-
lows for good excavation surface approximation and at the same time it gives a very effective calculation algorithms. A pproximation of excavations can be performed with high accuracy. This precision is particularly useful for calculation of volume of excavated earth masses, if we consider costs of exploitation of large industrial excavations.

R eferences

[1] A utume G., de Masson D.: L'interpolation par une regle flexible et ses applications en photogrammetrie numerique, XIII-th Congres of the ISP, presented paper, 1976.
[2] Bauhuber F., Erlacher V. and Gunther P.: Ein Programmsystem für die Behandlung digitaler H öhenmodelle, G eodätische W oche, K öln 1975.
[3] Beyer A .: Zur E rfassung flachen G eländes durch willkürlich verteilte H öhenpunkte, Vt 20, 1972.
[4] Bosman E.R., Eckhard D. and Kubik K.: Delft - a programme system for surface approximation, Bul.40, 1972.
[5] Connelly D. S.: An experiment in contour map smoothing on the ECU automated contouring system, C) 8, 1971.
[6] Junkins J. L., Jancaitis J. R.: M athematical terrain analysis, Proceedings of the 37 Th . A nnual M eeting of the A CSM , 1971.
[7] Peucker T. K.: Computer Cartography, R esource Paper No 17, W ashington D.C. 1972.
[8] Petrie G.: Photogrammetric techniques of data equation for terrain modelling. D epartment of G eography and Topographic, U niversity of G lasgow, 1987.
[9] PIASEK Z .: A numerical methods of approximation of given soil areas, Polisch A cademy of Sciences, 1993.
[10] Pia Sek Z.: Numerical method of cap silting R esearch of storage reservoirs. Copyright by Technical University of Technology, K raków, 1998.
[11] Pia sek Z.: D etermination of number of numerical integration steps on an industrial dump example. A V N , 8/9, 2000.
[12] R HIND D .: A utomated contouring - an empirical evaluation of some differing techniques, CJ 8, 1971.
[13] Schut G. H.: R eview of interpolation methods for digital terrain models, X III Congress of I.S.P., H elsinki, 1976.
[14] Torlegard K., Ostman A., Lindgren R.: A comparative test of photogrammetrically sampled Digital Elevation Models. Royal Institute of Technology, S-10044, Stockholm, 1986.
[15] Zienkiewicz O. C.: Finite elements method, A rkady, W arszawa 1972.

A ddress of the author:
Prof. Zbigniew Piasek D. Sc., Ph. D., M. Sc.
Cracow U niversity of Technology
D ivision of E ngineering G eodesy
31-155 K raków
ul. W arszawska 24
Poland

