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This paper discusses the condition that the sum 
of square errors must minimize and its geo-
metrical characteristics. It uses a super curved 

1 The optimal condition and its geometrical characters

The adjustment model with n observation and m (m < n) parameters may be written as

(1)

where lr (r = 1,2,...n)  represents components of observations;  er (r = 1,2,...n) represents components of error;  
yr (ua) (a = 1,2,...m) is assumed to be in a nonlinear map from unknown parametrical sets {xa}  to components of ad-
justed values;  ei is subjected to be a normal distribution and gij = E(li · lj) = E(ei · ej)  is the variance-covariance ma-
trices of error vector.

With the method of nonlinear least-squares adjustment, we want to seek the minimum

F(x) = er (x)grse
s (x)                                                                (2)

We know that a necessary condition for extreme value of a general continuous and differentiable multivariate
function �(X) is ∇�(X̂) = 0, it is to say that X̂ is a stable point, however it is not sufficient. One of its sufficient condi-
tions is that the Hessien matrix of �(X̂) is positive-define. The Taylor-series expansion of (2) evaluated at X̂ is re-

presented as  

We applied the above condition of multivariate function’s extreme value to F(x) [8], we have:

(3a)

and 

(3b)

where 

The formula (3) is the sufficient and necessary condition
of seeking the extreme value of (2). It has a direct geo-
metrical senses: formula (3a) means that the residual
vectors are orthogonal to the tangent space at the ex-
treme point; formula (3b) means that the extreme point
lies in the circle whose center is y and whose radius is
l–
kn

.

* This project is supported by the National Natural Science Fund of China.

2 Transformed surface and least-squares
adjustment

Iterating method was often used in solving the nonlinear
parametrical adjustment. To some extent, this method
improves the accuracy of the adjusted results, but it is
difficult to assess some characters of the resolution in
the whole. However it show us an important inspiration
from the progress of solving the model: the point which
minimize the sum of squares derivations must be a sta-
ble point. In the view of differential geometry, the resi-
dual vector should be orthogonal to tangent surface at
the stable point. Based above condition, we construct a

surface that is a transformed surface.
The construction of the surface and its features
are discussed in detail.
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hyper-surface, called Q-surface. This surface satisfies
the following conditions:

a. It comes through the observational point Q.

b. A point in the Q-surface is generated by intersection
of the normal plane and the line containing the point
Q, and this line is orthogonal to the normal plane.

So the initial point moves along the model surface, the
corresponding point in the hyper surface would vary ac-
cordingly. When the varied point in the hyper surface
coincides with the point Q, the corresponding point P

–
in

the model surface is the adjusted point.

We would address the characters of the hyper-surface.

a. Construction of the Q-surface: See Fig. 1, based on
the initial point P, the dimensionality of the tangent
space of the model at the point P is m, and the di-
mensionality of the normal space is n-m. Because
there are n(n –m) = m lines which is orthogonal to the
normal space through point Q in the n dimensional
space, the hypersurface is also m dimensional mani-
fold. For example, when the model surface is the two-
dimensional manifold (sphere) embedded in three-di-
mensional space, the dimensionality of the tangent
plane through random point P is two. There is one
one-dimensional normal line through this point and
there is one two-dimensional plane crossing the point
Q that is orthogonal to the normal line. When the sel-
ected point P varies along the sphere, the track of the
point P′ is also a sphere whose radius is the line 0Q. 

b. The hyper-surface is also continuous and differentia-
ble. We would describe it in details afterwards.

3 The procedure of solving the adjust model
Through the above analysis we know that the hyper sur-
face Q plays an important role in the adjustment. When
the point P in the model surface moves along the model
surface, the corresponding point P′ in the Q-surface
would varies. Conversely, When the point   in the Q-sur-
face moves along the Q-surface, the corresponding point
P in the model surface would varies. So the vector P P

_

and P′Q would vary accordingly. See Fig. 2.

We write P P
_

as {y
_
′ r – yr} = {∆yr} and P′Q as {yr

Q – y ′r} =
{∆y~r}, where {yr} is the function of {y′r} and {∆y′r} , which
is related do {∆yr}.

Let

∆yr = ∆yr (∆y ′s) (4)

So if we found out the obvious functional relation of for-
mula (4), the direct method of solving adjustment model
would appear. Followinglye would resolve it by con-
structing a pseudo polynomial.

Before commenting further, we introduce the notational
conventions as follows

a. Convention of the upper/lower indices: the lower Ro-
man letters r, s, … vary from 1 to n; the upper Roman
letters L, R, … vary from m+1 to n; the lower Greek
letters α, β, … vary from 1 to m.

b. We express the coordinate of the points in the Q-sur-
face as {y∼r} (point Q as {yr

Q} ) and the coordination of
the points in model surface as {yr} (point P

_
as {y

_r} ).
Write “∆” before the coordination to indict the coor-
dination difference of the points in the same surface
and “δ” before the coordination to indict the coordi-
nation difference of the points in the different surface.

We solve the model (1) by four setps as following.

3.1 Three transformed expressions of the model surface
[8]

Firstly, we write the equation of the model surface as 

yr = yr (xa)                (5)

Expand (5) into Taylor's series at initial value xa
0

(6)

where

Formula (6) corresponds to the Gauss-form of the mo-
del surface.

In formula (6), a subset of m equations is divided a group
and a subset of remaining n-m equations is divided into
another group

(7a)

(7b)  

(8a)

and 

(8b)
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Fig. 1 Q-surface and parametric adjustment

Fig. 2 Construction of Q-surface
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Formula (8) is equivalent to the Monge form of the mo-
del surface.

Substitute formula (8) for formula (7b), we can get

NL = yL – f L (yµ) = 0                                   (9)

which is the functional form of the model surface.

The expression of each order derivates and their relati-
ons would be derived.

Let                                                                                             

The differentiation of the both sides of formula 
(9) with respect to {yr} is [8]

(10)

The further differentiation of the both sides of formula
(10) with respect to {yr} is

(11)

If we adopt {ya} as the coordination of the model surface,
the Gauss-form of the model surface is written as  yr = hr

(ya) and the partial derivates with respect to new coor-
dination system are listed as follows

(12a)

(12b)

(12c)

Due to the deriving rules of the compound function that
is

(13)

Substitute formula (13) with the above outcomes {δρ
κ ,–NR

κ }  
= {Aρ

λ , AR
λ} Rλ

κ , then

(14a)
and

(14b)

The further differentiations of formula (13) are             

(15a)

(15b)

Similarly, one can obtain

3.2 Computing the

As we know that {δ y∼} = {y∼– y} yis orthogonal to the mo-
del surface, it must be expressible as a linear combina-
tion of the n-m gradient-vectors

(16)

On the other hand, {δ y′ } is orthogonal to gradient vec-
tor

(17)

Substitute formula (17) with δ y′ = δ y – δ y~ and δ y~r =
grs δ y~s, then we can get NL

r g
rs NM

s CM = NL
r δ yr.

The resolutions are as follows

(18a)

(18b)

where  

3.3 The construction of pseudo-multinomial

From Fig. 2, we can find δyr = yr
Q – yr and δy∼r = y~r– yr,

among which we select m variables that can be written as 
δyα = yαQ – yα and δyα~ = yα~ – yα. In order to construct the
pseudo-multinomial we can prove that {yα~ } is the function
of {yα}.

Let ∆yα = yα~ – yα and ∆yα~ = yαQ – yα~ , then {∆yα~ } must be
the function of {∆yα~ }. Again let

(19a)

(19b)

Then we can get

(20)

We must calculate the inverse partial derivative to obtain

{∆yα} which is a function of  {∆yα~ }. Let                                

The samilar as the conclusion of formulae (14) and (15),
we can get the following formulae

(21a)

and

(21b)
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From the formula (21), we find that we can calculate the partial derivative of all powers if we know A
∼α
γ and Ω

∼µ
ητ. The

following is the formula to calculate them

(22)

With the same method we can get Ω
∼α
βγ . Therefore {∆yα } can be expanded into Taylor's series

(23)

whose linear items have not only the first partial derivative but also the second partial derivative, and the second 
power items include not only the second partial derivative but also the third partial derivative. The formula can 
improve the accuracy of adusted values.

3.4 the calculation of adjusted values and parameters and the evaluation of their accuracy

After the calculation of {∆yα } , we can get the parameters based on the transformed relation between {∆yα } and {∆xβ },
that is

(24a)

The other n-m adjustments can be get with the Monge’s model surface

(24b)

From the formula (24) we can get the parameter values and the adjusted values of the corresponding adjusted 
point P

–

(25a)

(25b)

In the meantime we can calculate the mean square error of unit weight

(26)

The co-variance of adjusted parameters is

(27)

The other adjustments can also be calculated with the same above method.

4 The analysis on the case
There are error equations

where l1 and l2 are measurements which are not relative,
l1 ∼ N(2, 1) and l2 ∼ N(2, 1); x1 is the observing parame-
ter whose initial value is x1

0 = –π
3

. Then the equation of the
model face is 

From the method showed in the above, we can calculate
by four steps

Step 1: to calculate the partial derivative of all powers.

(A1
1, A2

1) = (–0.866, 0.5), R1
1 = –1.155, N2

1 = 0.577.

(Ω1
11, Ω2

11) = (–0.5, 0.866), Λ1
11 = –0.770, N2

11 = 1.540.

(Φ1
111, Φ2

111) = (–0.866, 0.5) Θ1
111 = –3.080, N2

111 = 3.080.

N2
2 = 1, N2

12 = N2
21 = N2

22 = 0.
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where

Step 2: to calculate δy∼1.

B22 = 1.333, Q22 = 0.750, C2 = 1.50, δy∼1 = 0.866,
y∼1 = 1.366.

Step 3: to calculate the coefficiences of the pseudo-mul-
tinomial.
A
∼1

1 = 2.536, R
∼1

1 = 0.394.

Step 4: to calculate all adjusted vlues.

∆y1 = y∼1 – y1 = 0.250, y∼1 = 0.750.

∆x1 = x∼1 – x1 = –0.321, x∼1 = 0.726.

∆y2 = y∼2 –y1 = 0.202, y∼2 = 0.664.

m0 = ±1.830.

The method is compared with the linear method, the re-
sult is listed in the Tab. 1.

method  x∼1 y∼1 y∼2 m0

The linear method 0.415 0.915 0.403 1.931

The pseudo-multinomial method 0.726 0.750 0.664 1.830

Tab. 1 the comparation between the pseudo-multinomial
method and the linear method
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This paper first discusses the condition that the sum of
square errors must minimize and its geometrical charac-
teristics. The paper uses a super curved surface that is a
transformed surface. The construction of the surface and
its features are discussed in detail. The paper first puts
forward a fitting method of pseudo-multinomial to solve
the nonlinear adjustment and gives the accuracy evalua-
tion of the adjusted model. Finally, a simple case indica-
tes the model is practical.
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Abstract
First, this paper gives the optimal condition and
its geometrical characters of the least-square 
adjustment. Then the relation between the trans-
formed surface and least squares is addressed.
Based on the above, a non-iterate method, called
the fitting method of pseudo-polynomial, is 
derived in detail. The final least-squares solution
can be determined with sufficient accuracy in a
single step and is not attained by moving the 
initiative point in the view of iteration. The 
accuracy of the solution relys wholly on the 
frequency of Taylor’s series. The example verifies
the correctness and validness of the method.

Topografische Aufnahmen in 
der Antarktis
Mehr als 500 000 km2

nahm der russische staat-
liche Betrieb Aerogeode-
zija vom sechsten Konti-
nent topografisch auf.
Die Luftbildaufnahmen
wurden mit Luftbild-
kammern AFA TE-50
und TE-100 sowie Flug-
zeugen IL-14 in den
Maßstäben 1:4000 und
1:200000, in der Regel
mit 60 % Längs- und
40 % Querüberdeckung
ausgeführt. Dabei wur-
den Statoskopangaben,
F u n k h ö h e n m e s s e r
RVTV und funkgeodä-
tische Stationen RDS ver-
wendet. Die Lagekoordi-
naten der Aufnahme-
zentren wurden mit ei-
nem Programm des Zen-
tralen Forschungsinsti-
tuts (CNIIGAiK) be-
rechnet. Sie dienten in
Verbindung mit den
Höhen als Ausgangs-
daten für die Verdich-
tung mit Hilfe der analy-
tischen räumlichen Bild-
triangulation. Die Netze
wurden mit Fotoredukto-
ren reduziert.

Bildpläne sowie ihre 
Montagen in 1:50 000
und 1:100 000 entstanden
mit Hilfe des Entzer-
rungsgeräts SEG V, die
Reliefzeichnung mit to-
pografischen Stereomet-
ren STD-2 oder Univer-
salgeräten SD und SPR.

Die Kartenoriginale wur-
den von ebenen Gebie-
ten an Hand der Bild-
pläne, von bergigen Ge-
bieten mit Hilfe einfa-
cher Projektoren in
1:50 000 und 1:100 000
gefertigt, die Herstel-
lungsoriginale in drei
Farben ausgeführt. Die
Karten wurden im
Gauss-Krüger-System
vorbereitet. Als Höhen-
system wurde das Niveau
des südlichen Ozeans an-

gehalten. Alle Karten
entstanden mittels Gra-
vur.

Seit 1970 erschienen 80
Blätter im Maßstab 
1:100 000 und 100 Blätter
im Maßstab 1:200 000.
Diese topografischen Kar-
ten der Antarktis fanden
wegen ihres Informati-
onsgehalts und ihrer Ge-
nauigkeit internationale
Anerkennung.

Seit 1985 wurden Spezi-
alkarten der Antarktis,
u. a. mit Hilfe des Funk-
ortungssystems RLS und
der Flugzeuge IL-14 und
IL-18 D in 1:500 000 und
1:1 000 000 hergestellt.
Das Relief und die Dicke
des Eises wurden mit
dem Impulsverfahren er-
mittelt. Mit Hilfe von
Luftbildkammern AFA
TE-10 entstanden Bild-
pläne 1:200 000 und
1:1000000. Die mittleren
Lagefehler betrugen
104 m mit IL-14 bzw.
124 m mit IL-18 D. Zum
Höhenanschluss dienten
Aero- und barometrische
Nivellements mit Lage-
fehlern von 6,6 bzw. 
11,8 m.

Seit 1975 wurden auch
großmaßstäbige Aufnah-
men 1:2000 von 25 km2

und 1:10 000 von 12 km2

der Antarktisstationen
Bellinghausen, Mirny, Mo-
lodežnaja, Novaja Laza-
revskaja und Russkaja
mit dem Messtisch ausge-
führt. Die Punkte wur-
den mit Theodolitzügen
(mit Sekundentheodoli-
ten 2T2 und elektroopti-
schen Streckenmessgerä-
ten NOK 2000 von Carl
Zeiss JENA) festgelegt.

Aus: Topografičeskie 
s-emki v Antarktide. 
Von Juskevič A. V. – 
Geodez. i Kartogr., 
Moskva (2000) 6, S. 12–16


