Erik W. Grafarend, Stuttgart

Sensitive control of high-speed-railway tracks

Part I: Local representation of the clothoid

0 Introduction

High-speed-railways also called bullet trains or Transrapid need *ex*treme reliable control *systems* (*"extasy"*) to avoid catastrophic events. Here we consequently focus on two sensitive problems related to *extasy*:

- a local high resolution representation of the track design (clothoid, circle, straight line) in UTM *map matching coordinates* is given.
- the *Mixed Model (universal Kriging)* is used to discriminate measurement errors from track displacements.

In this first part we develop the local high resolution representation of the *clothoid* (special case: circle, straight line) which is needed for creating an *expert base* of *extasy.*

1 Local representation of the clothoid

At first we are deriving the differential equation which generates the special curve *clothoid*. The initial value problem of such a differential equation is solved in terms of the Fresnel integrals. Secondly we succeed to solve the Fresnel integrals by a power series expansion the azimuth functions (sin α (s), cos α (s)) relative to the *initial curvature* κ_0 of the *clothoid*. In this way the coordinate functions $x - x_0 = f(\alpha_0, \kappa_0, s - s_0)$ and $y - y_0 = g$ $(\alpha_0, \kappa_0, s-s_0)$ are derived, namely for (x, y) as conformal coordinates of Gauss-Krueger or UTM type. Thirdly we take advantage of univariate series inversion in order to derive the *clothoid function* $y - y_0 = h(x - x_0; \alpha_0, \kappa_0)$. As special cases the straight line and the circle are included. Fourthly we present case studies for the local representation of the *clothoid* for various degrees of approximations.

1-1 Initial value problem of the clothoid

In the *Gauss-Krueger or UTM plane* we consider a planar curve $\mathbf{x}(s)$ which is parameterized by its *arc length s*. For a local representation of such a curve we introduce the *orthonormal Frenet frame* { \mathbf{f}_1 , \mathbf{f}_2 } which *moves* with respect to the *orthonormal Euclid frame* { \mathbf{e}_1 , \mathbf{e}_2 | **0**} fixed to the origin 0. By means of *Gram-Schmidt orthonormalization* a constructive set-up of such a moving frame is

$$\mathbf{f}_{1} = \mathbf{x}'(s), \quad \mathbf{f}_{2} = \frac{\mathbf{x}'' - \langle \mathbf{x}'' | \mathbf{x}' \rangle \mathbf{x}'}{\left\| \mathbf{x}'' - \langle \mathbf{x}'' | \mathbf{x}' \rangle \mathbf{x}' \right\|}.$$
 (1.1)

Here $\langle \bullet | \bullet \rangle$ denotes the standard *Euclidean scalar product* as well as $|\bullet|$ the standard *Euclidean norm* ($l_2 - norm$). $\mu := \mathbf{f_1}$ is called normalized *tangent vector*, $\mathbf{v} := \mathbf{f_2}$ normalized *normal vector* of the planar curve $\mathbf{x}(s)$. The moving frame { $\mathbf{f_1}(s), \mathbf{f_2}(s)$ } is related to the fixed frame { $\mathbf{e_1}, \mathbf{e_2} | \mathbf{0}$ } by

$$\mathbf{f}^* = [\mathbf{f}_1, \mathbf{f}_2] = [\mathbf{e}_1, \mathbf{e}_2] \mathbf{R}^* = \mathbf{e} \mathbf{R}^*$$
(1.2)

Where **R** is the set $\mathbf{R} \in SO(2)$ of orthonormal matrices, namely $\mathbf{R} \in {\{\mathbf{R} \in \mathbb{R}^{2 \times 2} | \mathbf{R}\mathbf{R}^* = \mathbf{I}_2, |\mathbf{R}| = +1\}}$. **R*** denotes the transpose of **R**.

$$\mathbf{R} = \begin{bmatrix} \cos\alpha & \sin\alpha \\ -\sin\alpha & \cos\alpha \end{bmatrix}, \qquad \alpha(s)$$
(1.3)

is the representation of the rotation matrix in terms of the polar coordinate α . As an angle α describes the *circular motion* of the tangent vector μ as well as the normal vector ν .

The *Frenet equations* are the derivational equations $\mathbf{f}^* = \mathbf{e}(\mathbf{R}^*)^* = \mathbf{f}\mathbf{R}(\mathbf{R}^*)^* = \mathbf{f}\mathbf{\Omega}^*$ where $\mathbf{\Omega} := \mathbf{R}^*\mathbf{R}^*$ denotes the *Cartan matrix*, as an antisymmetric matrix subject to the so(2) algebra. $\mathbf{\Omega} \in \mathbb{R}^{2\times 2}$ as an *antisymmetric* matrix is structured by only one nonvanishing element, namely $\omega_{12} = \kappa(s)$, called *curvature* of the planar curve.

$$\mathbf{\Omega} = \begin{bmatrix} 0 & \kappa(s) \\ -\kappa(s) & 0 \end{bmatrix}, \qquad \mathbf{f}_1'(s) = \kappa(s)\mathbf{f}_2 \qquad (1.4)$$

We are going to derive the angular representation of curvature $\kappa(s)$. An explicit writing of the identity $\mathbf{f} = \mathbf{eR}^*$ is

$$\begin{aligned} \mathbf{f}_1 &= \mathbf{e}_1 \cos \alpha + \mathbf{e}_2 \sin \alpha \\ \mathbf{f}_2 &= -\mathbf{e}_1 \sin \alpha + \mathbf{e}_2 \cos \alpha \end{aligned} & \Leftrightarrow \qquad \begin{aligned} \mathbf{f}_1 \cos \alpha - \mathbf{f}_2 \sin \alpha = \mathbf{e}_1 \\ \mathbf{f}_1 \sin \alpha + \mathbf{f}_2 \cos \alpha = \mathbf{e}_2 \end{aligned} (1.5)$$

differentiated to

$$\mathbf{f}_{1}^{\prime} = -\mathbf{e}_{1}\alpha^{\prime}\sin\alpha + \mathbf{e}_{2}\alpha^{\prime}\cos\alpha = \mathbf{f}_{2}\alpha^{\prime}$$

$$\mathbf{f}_{2}^{\prime} = -\mathbf{e}_{1}\alpha^{\prime}\cos\alpha - \mathbf{e}_{2}\alpha^{\prime}\sin\alpha = -\mathbf{f}_{1}\alpha^{\prime}.$$
 (1.6)

Indeed prime differentiation refers to differentiation with respect to *arc length s*. The final result of the differentiation we collect in

Corollary 1.1 (angular representation of curvature):

$$\kappa(s) = \alpha'(s) \tag{1.7}$$

For the proof we just have to identify $\omega_{12} = \kappa(s)$ within \mathbf{f}_1 and \mathbf{f}_2 , respectively. A *clothoid* may now be defined as such a curve whose product of curvature radius r(s) :=

 $1/\kappa(s)$ and its *arc length s* is a positive constant, namely $rs = a^2$. Conversely we take advantage of

Definition 1.2 ("clothoid"): A planar curve is called clothoid \mathbb{C} if its curvature is positively proportional to the arc length s, in particular $\kappa(s) = s/a^2$ (1.8)

The circular motion of the tangent vector $\mu(s)$ as well as normal vector v(s) of the *clothoid* can be conveniently described by solving the *initial value problem* $\alpha' = \kappa(s) =$ s/a^2 , $\alpha_0 = \alpha(s_0)$, $\alpha'_0 = \alpha'(s_0)$, solved by

Corollary 1.3 (circular motion of the tangent vector and the normal vector of the clothoid): The initial value problem (i) $\alpha' = s/a^2$, $s \in \mathbb{R}^+$, (ii) $\alpha_0 = \alpha(s_0)$, $\alpha'_0 = \alpha'(s_0)$ is solved by $\alpha(s) = \alpha_0 + \alpha_0'(s - s_0) + \frac{1}{2!}\alpha_0''(s - s_0)^2 = \alpha_0 + \kappa_0(s - s_0) + \frac{1}{2!}\kappa_0'(s - s_0)^2$ (1.9)

subject to

$$\kappa_0 = \kappa(s_0) = \frac{s_0}{a^2}, \quad \kappa'_0 = \kappa'(s_0) = \frac{1}{a^2}$$
 (1.10)

For the proof we have to find the general solution of the homogeneous equation $\alpha' = 0$ and a particular solution of the inhomogeneous equation $\alpha' = s/a^2$. First the general solution of the homogeneous equation is

$$\alpha(s) = \alpha_0 + \alpha'_0(s - s_0) \quad or \quad \alpha(s) = \alpha_0 + \frac{s_0}{a^2}(s - s_0) \quad (1.11)$$

Second a particular solution of the inhomogeneous equation $\alpha' = s/a^2$ is based upon the integral

$$\alpha(s) = \int_{s_0}^{s} \kappa(s) ds = \frac{1}{a^2} \int_{s_0}^{s} s ds = \frac{1}{2a^2} (s - s_0)^2$$
(1.12)

The superposition of the general solution of the homogeneous equation and of the particular solution of the inhomogeneous equation leads directly to the result of Corollary 1.3.

The *clothoid* $\mathbb{C} \subset \mathbb{R}^2$ isometrically embedded in \mathbb{R}^2 has finally to be constructed from its curvature $\kappa(s) =$ $\langle \mathbf{x}^{"} | \mathbf{v}(s) \rangle$ indeed a problem of *global differential geomet*ry. Since in the *first step* we have already characterized the circular motion of its tangent vector as well as its normal vector, in the second step we shall concentrate on its embedding function $\mathbf{x}(s)$. The tangent vector $\mathbf{x}'(s)$ at the point s enjoys a particular form in the ambient space \mathbb{R}^2 , namely

$$\mathbf{x}'(s) = \mathbf{e}_1 \mathbf{x}'(s) + \mathbf{e}_2 \mathbf{y}'(s) = \mathbf{e}_1 \cos \alpha(s) + \mathbf{e}_2 \sin \alpha(s) \quad (1.13)$$

Here, for the first time Cartesian coordinates (x, y)

covering \mathbb{R}^2 appear. They can be thought as conformal coordinates of type Gauss-Krueger or UTM with respect to an International Reference Ellipsoid, e.g. WGS 80. In comparing the left and right representation of the tangent vector **x**'(*s*) we are led to the system of differential equations of first order which govern the computation of (x, y) coordinates from the orientation parameter α of the tangent map $\mu(s) \in \mathbb{T}_{\mathcal{M}} \to \mathbb{S}^1$, namely

$$x' = \cos \alpha(s), \quad y' = \sin \alpha(s) \tag{1.14}$$

1-2 Series expansion of the Fresnel integrals

If we integrate directly these differential equations, in particular with respect to $\alpha(s)$ representing via *Corollary 1.3* the clothoid \mathbb{C} , we are led to the famous Fresnel integrals. Such an approach is not suited here since *first* Fresnel integrals are only tabulated and second they are too inflexible to account for those parts of the clothoid \mathbb{C} which are by purpose interrupted by *circles and straight lines.* Instead a local representation is searched for which can be easily adjusted to curve sections of type circle and/or straight line. Our result of integration (x', y'), respectively, is collected in

$$\begin{aligned} \text{Lemma 1.4 (local representation of the clothoid C):} \\ \text{Given the system of ordinary differential equations of first order} \\ (1.15) \qquad x' = \cos\alpha(s), \quad y' = \sin\alpha(s), \end{aligned}$$
then the solution of its initial value problem $(x_0, y_0) = (x(s_0), y(s_0))$ is
$$(1.16) \qquad x - x_0 = \int_{s_0}^{s} \cos\alpha(s) ds, \qquad y - y_0 = \int_{s_0}^{s} \sin\alpha(s) ds \\ (1.17) \quad \Delta x := x - x_0 = \cos\alpha_0 \Delta s - \frac{1}{2}\kappa_o \sin\alpha_0 \Delta s^2 - \frac{1}{6}\cos\alpha_0(\kappa_o^2 + \kappa_o' \tan\alpha_0) \Delta s^3 + \frac{1}{24}\kappa_o \cos\alpha_0(\kappa_o^2 \tan\alpha_0 - 3\kappa_o') \Delta s^4 + \frac{1}{120}\cos\alpha_0(\kappa_o^4 + 6\kappa_o^2\kappa_o' \tan\alpha_0 - 3\kappa_o'^2) \Delta s^5 - \frac{1}{720}\kappa_o \cos\alpha_0(\kappa_o^4 \tan\alpha_0 - 10\kappa_o^2\kappa_o' - 15\kappa_o'^3 \tan\alpha_0) \Delta s^6 + 0(\Delta s^7) \\ (1.18) \quad \Delta y := y - y_0 = \sin\alpha_0 \Delta s - \frac{1}{2}\kappa_o \cos\alpha_0 \Delta s^2 - \frac{1}{6}\cos\alpha_0(\kappa_o^2 \tan\alpha_0 - \kappa_o') \Delta s^3 - \frac{1}{24}\kappa_o \cos\alpha_0(\kappa_o^2 + 3\kappa_o' \tan\alpha_0) \Delta s^4 + \frac{1}{120}\cos\alpha_0(\kappa_o^4 \tan\alpha_0 - 6\kappa_o^2\kappa_o' - 3\kappa_o'^2 \tan\alpha_0) \Delta s^5 + \frac{1}{720}\kappa_o \cos\alpha_0(\kappa_o^2 + 10\kappa_o^2\kappa_o' \tan\alpha_0 - 15\kappa_o'') \Delta s^6 + 0(\Delta s^7) \\ \text{accurate up to order seven in } \Delta s := s - s_0. \text{ The initial curvatures } \kappa_o = \kappa(s_0) \text{ are classified as} \end{aligned}$$

(i)
$$\kappa_o = 0$$
 (straight line \mathbb{L}^2)
(ii) $\kappa_o = 1/r_0$ (r_0 radius of circle $\mathbb{S}_{r_0}^1$)
(iii) $\kappa_o = s_0/a^2$ (a^2 positive parameter of clothoid \mathbb{C}_{a^2})

For the proof we depart from the integrals

$$x - x_0 = \int_{s_0}^{s} \cos \alpha(s) ds = \int_{s_0}^{s} \cos \left[\alpha_0 + \kappa_o (s - s_0) + \frac{1}{2} \kappa'_o (s - s_0)^2 \right] d(s - s_0),$$
(1.19)

$$y - y_0 = \int_{s_0}^s \sin \alpha(s) ds = \int_{s_0}^s \sin \left[\alpha_0 + \kappa_o(s - s_0) + \frac{1}{2} \kappa'_o(s - s_0)^2 \right] d(s - s_0).$$
(1.20)

subject to

$$\alpha(s) = \alpha_0 + \Delta \alpha, \quad \Delta \alpha := \kappa_0 (s - s_0) + \frac{1}{2} \kappa_0' (s - s_0)^2 \quad (1.21)$$

Table 1.1: Power series of
$$\cos(\alpha_0 + \Delta \alpha)$$
, $\sin(\alpha_0 + \Delta \alpha)$
 $\cos(\alpha_0 + \Delta \alpha) = \cos \alpha_0 - \frac{1}{1!} \sin \alpha_0 \Delta \alpha - \frac{1}{2!} \cos \alpha_0 \Delta \alpha^2 + \frac{1}{3!} \sin \alpha_0 \Delta \alpha^3 + \frac{1}{4!} \cos \alpha_0 \Delta \alpha^4 - \frac{1}{5!} \sin \alpha_0 \Delta \alpha^5 + 0_c (\Delta \alpha^6)$
 $\sin(\alpha_0 + \Delta \alpha) = \sin \alpha_0 - \frac{1}{1!} \cos \alpha_0 \Delta \alpha - \frac{1}{2!} \sin \alpha_0 \Delta \alpha^2 - \frac{1}{3!} \cos \alpha_0 \Delta \alpha^3 + \frac{1}{4!} \sin \alpha_0 \Delta \alpha^4 + \frac{1}{5!} \cos \alpha_0 \Delta \alpha^5 + 0_s (\Delta \alpha^6)$

 $\Delta \alpha = \kappa_0 \Delta s + \kappa'_0 \Delta s^2 / 2$ $\Delta \alpha^2 = \kappa_o^2 \Delta s^2 + \kappa_o \kappa'_0 \Delta s^3 + {\kappa'_0}^2 \Delta s^4 / 4$ $\Delta \alpha^3 = \kappa_o^3 \Delta s^3 + 3\kappa_0^2 \kappa'_o \Delta s^4 / 2 + 3\kappa {\kappa'_0}^2 \Delta s^5 / 4 + {\kappa'_0}^3 \Delta s^6 / 8$ $\Delta \alpha^4 = \kappa_o^4 \Delta s^4 + 3\kappa_0^3 \kappa'_o \Delta s^5 / 2 + 3\kappa_o^2 \kappa_0'^2 \Delta s^6 / 2 + {\kappa'_0}^4 \Delta s^8 / 16$ $\Delta \alpha^5 = \kappa_o^5 \Delta s^5 + 5\kappa_0^4 \kappa'_o \Delta s^6 / 2 + 5\kappa_o^3 {\kappa'_0}^2 \Delta s^7 / 2 + 5\kappa_o^2 {\kappa'_0}^3 \Delta s^8 / 4 + 5\kappa_o {\kappa'_0}^4 \Delta s^9 / 16 + {\kappa'_0}^5 \Delta s^{10} / 32$

Table 1.3: Power series expressions of Fresnel integrals

$$\begin{aligned} x - x_0 &= \int_{s_0}^{s} \left[\cos \alpha_0 - \frac{1}{1!} \sin \alpha_0 \Delta \alpha - \frac{1}{2!} \cos \alpha_0 \Delta \alpha^2 + \frac{1}{3!} \sin \alpha_0 \Delta \alpha^3 + \frac{1}{4!} \cos \alpha_0 \Delta \alpha^4 - \frac{1}{5!} \sin \alpha_0 \Delta \alpha^5 + 0_c (\Delta \alpha^6) \right] d(s - s_0) \\ y - y_0 &= \int_{s_0}^{s} \left[\sin \alpha_0 + \frac{1}{1!} \cos \alpha_0 \Delta \alpha - \frac{1}{2!} \sin \alpha_0 \Delta \alpha^2 - \frac{1}{3!} \sin \alpha_0 \Delta \alpha^3 + \frac{1}{4!} \sin \alpha_0 \Delta \alpha^4 + \frac{1}{5!} \cos \alpha_0 \Delta \alpha^5 + 0_s (\Delta \alpha^6) \right] d(s - s_0) \\ \hline 1^{st} \text{ integrals} \\ \int_{s_0}^{s} \cos \alpha_0 ds = \cos \alpha_0 (s - s_0), \quad \int_{s_0}^{s} \sin \alpha_0 ds = \sin \alpha_0 (s - s_0) \\ \hline 2^{nd} \text{ integrals} \\ \int_{s_0}^{s} \cos \alpha_0 \Delta \alpha ds = \sin \alpha_0 \left[\kappa_0 \int_{0}^{s - s_0} \Delta s \Delta s + \kappa'_0 \int_{0}^{s - s_0} \Delta s^2 d\Delta s / 2 \right] \\ \int_{s_0}^{s} \cos \alpha_0 \Delta \alpha ds = \cos \alpha_0 \left[\kappa_0 \int_{0}^{s - s_0} \Delta s \Delta s + \kappa'_0 \int_{0}^{s - s_0} \Delta s^2 d\Delta s / 2 \right] \\ - \frac{1}{1!} \int_{s_0}^{s} \sin \alpha_0 \Delta \alpha ds = -\kappa_o \sin \alpha_0 (s - s_0)^2 / 2 - \kappa'_o \sin \alpha_0 (s - s_0)^3 / 6 \\ + \frac{1}{1!} \int_{s_0}^{s} \cos \alpha_0 \Delta \alpha ds = \kappa_o \cos \alpha_0 (s - s_0)^2 / 2 + \kappa'_o \cos \alpha_0 (s - s_0)^3 / 6 \end{aligned}$$

$$\frac{3^{rd} \text{ integrals}}{\int_{a_{0}}^{b} \cos \alpha_{0} \Delta \alpha^{2} ds = \cos \alpha_{0} \left[\kappa_{0}^{a} \int_{0}^{b} \Delta s^{2} d\Delta s + \kappa_{0} \kappa_{0}^{b} \int_{0}^{b} \Delta s^{2} d\Delta s + \kappa_{0}^{c} \int_{0}^{a} \Delta s^{4} d\Delta s / 4 \right]$$

$$\int_{a_{0}}^{b} \sin \alpha_{0} \Delta \alpha^{2} ds = \sin \alpha_{0} \left[\kappa_{0}^{a} \int_{0}^{b} \Delta s^{2} d\Delta s + \kappa_{0} \kappa_{0}^{b} \int_{0}^{a} \Delta s^{2} d\Delta s + \kappa_{0}^{c} \int_{0}^{a} \Delta s^{2} d\Delta s + \kappa_{0}^{c} \int_{0}^{a} \Delta s^{4} d\Delta s / 4 \right]$$

$$-\frac{1}{2!} \int_{a_{0}}^{b} \cos \alpha_{0} \Delta \alpha^{2} ds = -\kappa_{0}^{a} \cos \alpha_{0} (s - s_{0})^{2} / 6 - \kappa_{0} \kappa_{0}^{c} \cos \alpha_{0} (s - s_{0})^{4} / 8$$

$$-\frac{1}{2!} \int_{a_{0}}^{b} \sin \alpha_{0} \Delta \alpha^{2} ds = -\kappa_{0}^{a} \sin \alpha_{0} (s - s_{0})^{2} / 6 - \kappa_{0} \kappa_{0}^{c} \sin \alpha_{0} (s - s_{0})^{4} / 8$$

$$-\frac{1}{2!} \int_{a_{0}}^{b} \sin \alpha_{0} \Delta \alpha^{2} ds = -\kappa_{0}^{a} \sin \alpha_{0} (s - s_{0})^{2} / 6 - \kappa_{0} \kappa_{0}^{c} \sin \alpha_{0} (s - s_{0})^{4} / 8$$

$$-\frac{1}{2!} \int_{a_{0}}^{b} \sin \alpha_{0} \Delta \alpha^{2} ds = -\kappa_{0}^{a} \sin \alpha_{0} (s - s_{0})^{2} / 6 - \kappa_{0} \kappa_{0}^{c} \sin \alpha_{0} (s - s_{0})^{4} / 8$$

$$-\frac{1}{2!} \int_{a_{0}}^{b} \sin \alpha_{0} \Delta \alpha^{2} ds = -\kappa_{0}^{a} \sin \alpha_{0} (s - s_{0})^{4} / 2 + g \kappa_{0} \kappa_{0}^{c} \int_{0}^{b} \Delta s^{2} \Delta s / 4 + \kappa_{0}^{c} \int_{0}^{b} \Delta s^{2} d\Delta s / 8$$

$$\frac{4^{th} integrals}{b}$$

$$\frac{1}{b} \cos \alpha_{0} \Delta \alpha^{2} ds = \cos \alpha_{0} \left[\kappa_{0}^{a} \int_{0}^{b} \Delta s^{2} d\Delta s + 3\kappa_{0}^{a} \kappa_{0}^{c} \int_{0}^{b} \Delta s^{2} d\Delta s / 2 + g \kappa_{0} \kappa_{0}^{c} \int_{0}^{b} \Delta s^{2} d\Delta s / 4 + \kappa_{0}^{c} \int_{0}^{b} \Delta s^{2} d\Delta s / 8$$

$$\frac{1}{1!} \int_{a_{0}}^{b} \cos \alpha_{0} \Delta \alpha^{2} ds = -\kappa_{0}^{c} \cos \alpha_{0} (s - s_{0})^{4} / 24 + \kappa_{0}^{a} \kappa_{0}^{c} \sin \alpha_{0} (s - s_{0})^{5} / 4 + \kappa_{0}^{a} \kappa_{0}^{c} \cos \alpha_{0} (s - s_{0})^{5} / 4 + \kappa_{0}^{a} \kappa_{0}^{c} \cos \alpha_{0} (s - s_{0})^{5} / 4 + \kappa_{0}^{a} \kappa_{0}^{c} \cos \alpha_{0} (s - s_{0})^{2} / 4 + \kappa_{0}^{a} \kappa_{0}^{c} \cos \alpha_{0} (s - s_{0})^{2} / 4 + \kappa_{0}^{a} \kappa_{0}^{c} \delta \Delta s / 4 + \kappa_{0}^{a} \kappa_{0}^{c} \delta \alpha_{0} \delta \sigma / 4 + \kappa_{0}^{a} \kappa_{0}^{c} \delta \alpha_{0} \delta \sigma / 4 + \kappa_{0}^{a} \kappa_{0}^{c} \delta \alpha_{0} \delta \sigma / 4 + \kappa_{0$$

$$+ 5\kappa_{o}^{2}\kappa_{0}^{\prime 3}\int_{0}^{5-s_{0}} \Delta s^{8} d\Delta s / 4 + 5\kappa_{o}\kappa_{0}^{\prime 4}\int_{0}^{5-s_{0}} \Delta s^{9} d\Delta s / 16 + \kappa_{0}^{\prime 5}\int_{0}^{5-s_{0}} \Delta s^{10} d\Delta s / 32 \end{bmatrix}$$

$$\int_{s_{0}}^{5} \cos\alpha_{0}\Delta\alpha^{5} ds = \cos\alpha_{0} \left[\kappa_{o}^{5}\int_{0}^{5-s_{0}} \Delta s^{5} d\Delta s + 5\kappa_{o}^{\prime}\kappa_{0}^{\prime 4}\int_{0}^{5-s_{0}} \Delta s^{6} d\Delta s / 2 + 5\kappa_{o}^{3}\kappa_{0}^{\prime 2}\int_{0}^{5-s_{0}} \Delta s^{7} d\Delta s / 2 +
+ 5\kappa_{o}^{2}\kappa_{0}^{\prime 3}\int_{0}^{5-s_{0}} \Delta s^{8} d\Delta s / 4 + 5\kappa_{o}\kappa_{0}^{\prime 4}\int_{0}^{5-s_{0}} \Delta s^{9} d\Delta s / 16 + \kappa_{0}^{\prime 5}\int_{0}^{5-s_{0}} \Delta s^{10} d\Delta s / 32 \right]$$

$$-\frac{1}{5!}\int_{s_{0}}^{5} \sin\alpha_{0}\Delta\alpha^{5} ds = -\kappa_{o}^{5} \sin\alpha_{0}(s-s_{0})^{6} / 720 - \kappa_{o}^{\prime}\kappa_{o}' \sin\alpha_{0}(s-s_{0})^{7} / 336 -
- \kappa_{o}^{2}\kappa_{o}'^{\prime 2} \sin\alpha_{0}(s-s_{0})^{8} / 384 - \kappa_{o}^{2}\kappa_{o}'^{5} \sin\alpha_{0}(s-s_{0})^{9} / 864 -
- \kappa_{o}\kappa_{o}'^{\prime 4} \sin\alpha_{0}(s-s_{0})^{6} / 720 + \kappa_{o}^{4}\kappa_{o}' \cos\alpha_{0}(s-s_{0})^{7} / 336 +
+ \kappa_{o}^{2}\kappa_{o}'^{2} \cos\alpha_{0}(s-s_{0})^{8} / 384 + \kappa_{o}^{2}\kappa_{o}'^{3} \cos\alpha_{0}(s-s_{0})^{9} / 864 +
+ \kappa_{o}\kappa_{o}'^{\prime 4} \cos\alpha_{0}(s-s_{0})^{8} / 384 + \kappa_{o}^{2}\kappa_{o}'^{5} \cos\alpha_{0}(s-s_{0})^{9} / 864 +
+ \kappa_{o}\kappa_{o}'^{\prime 4} \cos\alpha_{0}(s-s_{0})^{10} / 3840 + \kappa_{o}'^{5} \cos\alpha_{0}(s-s_{0})^{9} / 864 +
+ \kappa_{o}\kappa_{o}'^{\prime 4} \cos\alpha_{0}(s-s_{0})^{10} / 3840 + \kappa_{o}'^{5} \cos\alpha_{0}(s-s_{0})^{9} / 864 +
+ \kappa_{o}\kappa_{o}'^{\prime 4} \cos\alpha_{0}(s-s_{0})^{10} / 3840 + \kappa_{o}'^{5} \cos\alpha_{0}(s-s_{0})^{9} / 864 +
+ \kappa_{o}\kappa_{o}'^{\prime 4} \cos\alpha_{0}(s-s_{0})^{10} / 3840 + \kappa_{o}'^{5} \cos\alpha_{0}(s-s_{0})^{11} / 42240$$

By means of the *uniformly convergent power series* of type $\cos(\alpha_0 + \Delta \alpha)$ and $\sin(\alpha_0 + \Delta \alpha)$ given in *Table 1.1* and the powers $\Delta \alpha^n = (\alpha_0 + \Delta \alpha)^n$ given in *Table 1.2* up to n = 5 we are able to compute the fundamental integrals of Fresnel type outlined in *Table 1.3*. Indeed due to uniform convergence we can apply termwise integration. A fill in of these integrals of order one, two, three, four, five and six into $(x - x_0, y - y_0)$ ordered according to the power of $\Delta s := s - s_0$ leads directly to (1.17) and (1.18).

1-3 Univariate series inversion

In many applications the *clothoid* is uncomfortably parameterized in terms of the *arc length* $s - s_0$ with respect to an initial point $(x(s_0), y(s_0))$. We are going beforehand to derive the parameterization $y - y_0 = f(x - x_0)$ or $\Delta y(\Delta y)$ of the clothoid in terms of the abscissa $\Delta x := x - x_0$. The technique we apply is the *inversion of a univariate homogeneous polynomial of degree n*, e.g. according to E. W. GRAFAREND, T. KRARUP and R. SYFFUS (1996), being outlined in *Table 1.4*. As soon as we have inverted $\Delta x(\Delta s)$ towards $\Delta s(\Delta x)$, we replace $\Delta s(\Delta x)$ within the power series $\Delta y(\Delta s)$. The result is presented in

Lemma 1.5 (y(x) local representation of the clothoid
$$\mathbb{C}$$
):
The series inversion of $\Delta x(\Delta s)$ of type (1.17) by Table 1.4 leads to $\Delta s(\Delta x)$, namely
(1.22) $\Delta s = \sec \alpha_0 \Delta x + \frac{1}{2}\kappa_0 \sec^2 \alpha_0 \tan \alpha_0 \Delta x^2 + \frac{1}{6}\sec^3 \alpha_0 (\kappa_o^2 + 3\tan^2 \alpha_0 + \kappa_o' \tan \alpha_0)\Delta x^3 + \frac{1}{24}\kappa_0 \sec^4 \alpha_0 (9\kappa_o^2 \tan \alpha_0 + 15\kappa_o^2 \tan^2 \alpha_0 + 3\kappa_o' + 10\kappa_o' \tan^2 \alpha_0)\Delta x^4 + \frac{1}{120}\sec^5 \alpha_0 (9\kappa_o^4 + 90\kappa_o^4 \tan^2 \alpha_0 + 105\kappa_o^2 \tan^4 \alpha_0 + 59\kappa_o^2 \kappa_o' \tan \alpha_0 + 105\kappa_o^2 \kappa_o' \tan^3 \alpha_0 + 3\kappa_o'^2 + 10\kappa_o'^2 \tan^2 \alpha_0)\Delta x^5 + \frac{1}{720}\kappa_o \sec^6 \alpha_0 (225\kappa_o^4 \tan \alpha_0 + 1050\kappa_o^4 \tan^3 \alpha_0 + 1050\kappa_o'^2 \tan^3 \alpha_0)\Delta x^6 + \frac{1260\kappa_o^2 \kappa_0' \tan^4 \alpha_0 + 153\kappa_o'^2 \tan \alpha_0 + 280\kappa_o'^2 \tan^3 \alpha_0)\Delta x^6 + \frac{10}{120}(\Delta x^7)$

which is repaced in $\Delta y(\Delta s)$ of type (1.18).

$$(1.23) \quad \Delta y = y - y_0 = = \Delta x \tan \alpha_0 + + \frac{1}{2} \Delta x^2 \kappa_0 \sec^3 \alpha_0 + + \frac{1}{6} \Delta x^3 \sec^4 \alpha_0 (3\kappa_o^2 \tan \alpha_0 + \kappa_o') + + \frac{1}{24} \Delta x^4 \kappa_0 \sec^5 \alpha_0 \Big[3\kappa_o^2 (1 + 5\tan^2 \alpha_0) + 10\kappa_o' \tan \alpha_0 \Big] + + \frac{1}{24} \Delta x^5 \sec^6 \alpha_0 \Big[15\kappa_o^4 \tan \alpha_0 (3 + 7\tan^2 \alpha_0) + \kappa_o^2 \kappa_o' (19 + 105\tan^2 \alpha_0) + 10\kappa_o'^2 \tan \alpha_0 \Big] + + \frac{1}{120} \Delta x^5 \sec^6 \alpha_0 \Big[45\kappa_o^4 (1 + 14\tan^2 \alpha_0 + 21\tan^4 \alpha_0) + + 252\kappa_o^2 \kappa_o' \tan \alpha_0 (2 + 5\tan^2 \alpha_0) + 8\kappa_o'^2 (6 + 35\tan^2 \alpha_0) \Big] + + \frac{1}{5040} \Delta x^7 \sec^8 \alpha_0 \Big[45\kappa_o^6 \tan \alpha_0 (35 + 210\tan^2 \alpha_0 + 231\tan^4 \alpha_0) + + 9\kappa_o' \kappa_o' (81 + 1218\tan^2 \alpha_0 + 1925\tan^4 \alpha_0) + 26\kappa_o^2 \kappa_o'^2 \tan \alpha_0 (86 + 225\tan^2 \alpha_0) + + 8\kappa_o'^3 (6 + 35\tan^2 \alpha_0) \Big] + + 0(\Delta x^8)$$

 Table 1.4: Inversion of a univariate homogeneous polynomial of degree n, clothoidal application

$$y(x) = a_{11}x + a_{12}x^{2} + a_{13}x^{3} + a_{14}x^{4} + \dots + a_{1n}x^{n}$$

$$x(y) = b_{11}y + b_{12}y^{2} + b_{13}y^{3} + b_{14}y^{4} + \dots + b_{1n}y^{n}$$

$$b_{11} = a_{11}^{-1}$$

$$b_{12} = -a_{11}^{-3}a_{12}$$

$$b_{13} = -a_{11}^{-1}(a_{12}a_{22}^{-1}a_{23} - a_{13})a_{33}^{-1}$$

$$b_{14} = a_{11}^{-1} \left[a_{12}a_{22}^{-1}(a_{24} - a_{23}a_{33}^{-1}a_{34}) + a_{13}a_{33}^{-1}a_{34} - a_{14}\right]a_{44}^{-1}$$

$$\dots$$

$$y := x - x_{0}, \quad x := s - s_{0}$$

$$: (1.17):$$

$$a_{11} = \cos\alpha_{0}, \quad a_{12} = -\frac{1}{2}\kappa_{0}\sin\alpha_{0},$$

$$a_{13} = -\frac{1}{6}\cos\alpha_{0}(\kappa_{o}^{2} + \kappa_{o}'\tan\alpha_{0}), \quad a_{14} = \frac{1}{24}\kappa_{o}\cos\alpha_{0}(\kappa_{o}^{2}\tan\alpha_{0} - 3\kappa_{o}'), \dots$$

Example 1.1

(the circle
$$\mathbb{S}_{r_0}^1$$
: $\kappa_o = \frac{1}{r_0}$, $\kappa'_o = 0$):
 $\alpha(s) = \alpha_0 + \int_{s_0}^s \kappa(s) ds = \alpha_0 + \kappa_o(s - s_0)$
 $x - x_0 = \int_{s_0}^s \cos\alpha(s) ds = \int_{s_0}^s \cos[\alpha_0 + \kappa_o(s - s_0)] ds = \frac{1}{\kappa_o} \int_{\alpha_0}^{\alpha_0 + \kappa_o(s - s_0)} \cos x dx$
 $y - y_0 = \int_{s_0}^s \sin\alpha(s) ds = \int_{s_0}^s \sin[\alpha_0 + \kappa_o(s - s_0)] ds = \frac{1}{\kappa_o} \int_{\alpha_0}^{\alpha_0 + \kappa_o(s - s_0)} \sin x dx$

AVN 2/2002

(1.24)

$$x - x_{0} = \frac{\sin \left[\alpha_{0} + \kappa_{o}(s - s_{0})\right] - \sin \alpha_{0}}{\kappa_{o}}$$

$$y - y_{0} = \frac{-\cos \left[\alpha_{0} + \kappa_{o}(s - s_{0})\right] + \cos \alpha_{0}}{\kappa_{o}}$$

$$\cos[\alpha_0 + \kappa_o(s - s_0)] = \sqrt{1 - \sin^2[\alpha_0 + \kappa_o(s - s_0)]^2} = \sqrt{1 - [\kappa_o(x - x_0) + \sin\alpha_0]^2}$$

(1.26)

$$V - y_{0} = -\sqrt{\frac{1}{\kappa_{0}^{2}} - \left[(x - x_{0}) + \frac{1}{\kappa_{o}} \sin \alpha_{0}\right]^{2}} + \frac{\cos \alpha_{0}}{\kappa_{o}}$$

$$If \ \alpha_{0} = 0, \ x_{0} = 0, \ y_{0} = 1/\kappa_{0}, \ then$$

$$y = -\sqrt{r_{0}^{2} - x^{2}}$$
covers the Southern half circle.

A series expansion of (1.24), (1.25) according to *Table 1.1* leads directly to (1.17) with $\kappa'_{0.} = 0$. Similarly a series expansion of the root in (1.26) approaches (1.23) for $\kappa'_{0.} = 0$.

Example 1.2 (the straight line \mathbb{L}^1 : $\kappa_0 = 0$, $\kappa'_0 = 0$)

$$\alpha(s) = \alpha_0$$
$$x - x_0 = \int_{s_0}^s \cos \alpha(s) ds = \cos \alpha_0 (s - s_0)$$
$$y - y_0 = \int_{s_0}^s \sin \alpha(s) ds = \sin \alpha_0 (s - s_0)$$

$$\begin{pmatrix} Corollary \ 1.8 \ (\mathbb{L}^{1} \subset \mathbb{R}^{2}): \\ (1.27) \qquad x - x_{0} = \cos \alpha_{0}(s - s_{0}), \quad y - y_{0} = \sin \alpha_{0}(s - s_{0}) \\ y - y_{0} = \tan \alpha_{0}(x - x_{0}) \end{pmatrix}$$

Examples 1.1 and *Example 1.2* have clearly documented that the fundamental local representation (1.17), (1.18) as well as (1.23) of the *clothoid* contains the circle and the straight line as special cases. Indeed this has been one target function why we developed (1.17), (1.18), and (1.23).

1-4 Case studies

For the case studies we have collected the initial value data of *Table 1.5* for various degrees of approximation.

<i>Table 1.5</i> : Initial value data for a numerical analysis of the clothoid		
Case 1	Case 1	Case 3
$\kappa_0 = 1/500$	$\kappa_0 = 1/500$	$\kappa_0 = 1/500$
$\kappa_0' = 0$	$\kappa_0' = 0$	$\kappa_0' = 10^{-6}$
$\alpha_0 = 10^{\circ}$	$\alpha_0 = 10^{\circ}$	$\alpha_0 = 10^{\circ}$
$x_0 = y_0 = s_0 = 0$	$x_0 = y_0 = s_0 = 0$	$x_0 = y_0 = s_0 = 0$
(<i>Figure 1.1</i>)	(<i>Figure 1.1</i>)	(Figure 1.7)
$x_0 = y_0 = 200$	$x_0 = y_0 = 200$	$\kappa_0 = 1/500^{\circ}$
$s_0 = 0$	$s_0 = 0$	$\kappa_0' = 10^{-6}$
(<i>Figure 1.2</i>)	(<i>Figure 1.2</i>)	$\alpha_0 = 45^\circ$
$x_0 = y_0 = 200$	$x_0 = y_0 = 200$	$x_0 = y_0 = 0$
$s_0 = 50$	$s_0 = 50$	$s_0 = 0$
(Figure 1.3)	(Figure 1.3)	(<i>Figure 1.8</i>)

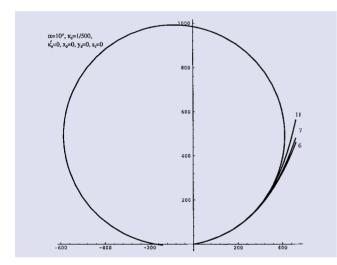


Figure 1.1: Local representation of the circle by (1.23), $\kappa_0 = 1/500$, $\kappa_0' = 0$, $\alpha_0 = 10^\circ$, $x_0 = y_0 = 0$, $s_0 = 0$, various degrees of approximation.

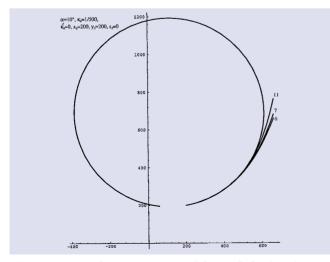


Figure 1.2: Local representation of the circle by (1.23), $\kappa_0 = 1/500$, $\kappa'_0 = 0$, $\alpha_0 = 10^\circ$, $x_0 = 200$, $y_0 = 200$, $s_0 = 0$, various degrees of approximation.

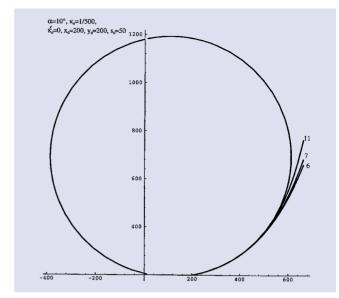


Figure 1.3: Local representation of the circle by (1.23), $\kappa_0 = 1/500$, $\kappa'_0 = 0$, $\alpha_0 = 10^\circ$, $x_0 = 200$, $y_0 = 200$, $s_0 = 50$, various degrees of approximation.

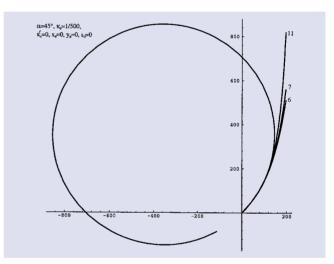


Figure 1.4: Local representation of the circle by (1.23), $\kappa_0 = 1/500$, $\kappa_0' = 0$, $\alpha_0 = 45^\circ$, $x_0 = y_0 = 0$, $s_0 = 0$, various degrees of approximation.

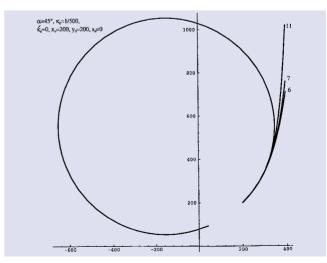


Figure 1.5: Local representation of the circle by (1.23), $\kappa_0 = 1/500$, $\kappa'_0 = 0$, $\alpha_0 = 45^\circ$, $x_0 = 200$, $y_0 = 200$, $s_0 = 0$, various degrees of approximation.

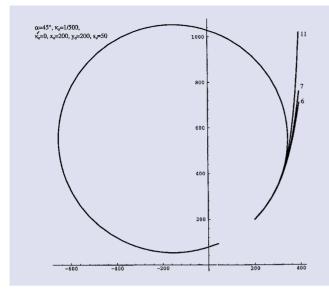


Figure 1.6: Local representation of the circle by (1.23), $\kappa_0 = 1/500$, $\kappa'_0 = 0$, $\alpha_0 = 45^\circ$, $x_0 = 200$, $y_0 = 200$, $s_0 = 50$, various degrees of approximation.

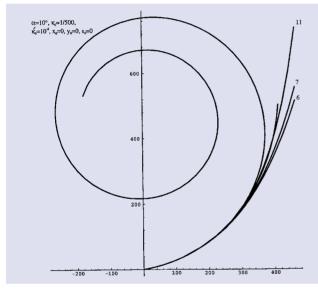
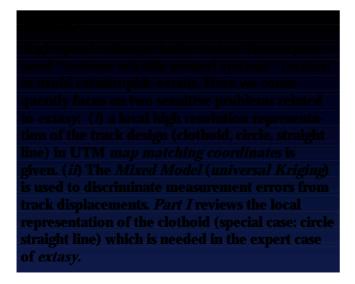


Figure 1.7: Local representation of the circle by (1.23), $\kappa_0 = 1/500$, $\kappa'_0 = 10^{-6}$, $\alpha_0 = 10^{\circ}$, $x_0 = y_0 = 0$, $s_0 = 0$, various degrees of approximation.



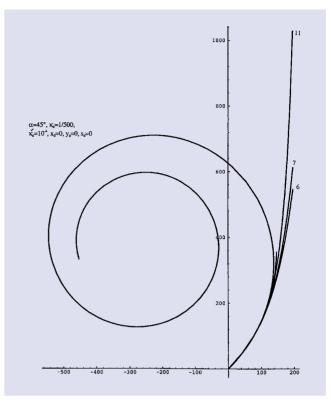


Figure 1.8: Local representation of the circle by (1.23), $\kappa_0 = 1/500$, $\kappa'_0 = 10^{-6}$, $\alpha_0 = 45^\circ$, $x_0 = y_0 = 0$, $s_0 = 0$, various degrees of approximation.

Address of the author:

Professor Dr. mult. ERIK W. GRAFAREND Department of Geodetic Science Stuttgart University Geschwister-Scholl-Str. 24/D 70174 Stuttgart

Hochgeschwinnigkeinstorssen, sog. Stotsweilenzüge/Transrapid / benötigen extrem zuverlässige Überwachungssysteme (*"extasy"*), um katastrophale Unglücksfälle zu vermeiden. Auf dem Weg zu "extasy" behandeln wir zwei Sensibilitätsprobleme: (*i*) wir entwickeln eine hochauflösende Darstellung des Trassenentwurfes (Klothoide, Kreis, Gerade) in UTM / Gauß-Krüger *"Map Matching"* Koordinaten. (*ii*) Das zugeordnete *Gemischte Modell* (*universelles "Kriging"*) wird vorgestellt, insbesondere um Messfehler von einer Trassenverschiebung zu trennen. Der erste Teil konzentriert sich auf die lokale, hochauflösende Darstellung der *Klothoide* (Spezialfall: Kreis, Gerade), Grundlage für den Aufbau einer trassenorientierten Wissensbasis.