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Sensitive control of
high-speed-railway tracks

0 Introduction

High-speed-railways also called bullet trains or Transra-
pid need extreme reliable control systems (“extasy”) to
avoid catastrophic events. Here we consequently focus
on two sensitive problems related to extasy:

• a local high resolution representation of the track
design (clothoid, circle, straight line) in UTM map
matching coordinates is given.

• the Mixed Model (universal Kriging) is used to discrim-
inate measurement errors from track displacements.

In this first part we develop the local high resolution
representation of the clothoid (special case: circle,
straight line) which is needed for creating an expert base
of extasy.

1 Local representation of the clothoid  

At first we are deriving the differential equation which
generates the special curve clothoid. The initial value
problem of such a differential equation is solved in terms
of the Fresnel integrals. Secondly we succeed to solve the
Fresnel integrals by a power series expansion the
azimuth functions (sin α (s), cos α (s)) relative to the
initial curvature κ0 of the clothoid. In this way the coor-
dinate functions x – x0 = f (α0, κ0, s – s0) and y – y0 = g
(α0, κ0, s – s0) are derived, namely for (x, y) as conformal
coordinates of Gauss-Krueger or UTM type. Thirdly we
take advantage of univariate series inversion in order to
derive the clothoid function y – y0 = h(x – x0; α0, κ0). As
special cases the straight line and the circle are included.
Fourthly we present case studies for the local represen-
tation of the clothoid for various degrees of approxima-
tions.

1-1 Initial value problem of the clothoid

In the Gauss-Krueger or UTM plane we consider a pla-
nar curve x(s) which is parameterized by its arc length s.
For a local representation of such a curve we introduce
the orthonormal Frenet frame {f1, f2} which moves with
respect to the orthonormal Euclid frame {e1, e2 |0} fixed
to the origin 0. By means of Gram-Schmidt orthonorma-
lization a constructive set-up of such a moving frame is

Here �•�•� denotes the standard Euclidean scalar product
as well as �•� the standard Euclidean norm (l2 – norm).
µµ := f1 is called normalized tangent vector, v := f2 norma-
lized normal vector of the planar curve x(s). The moving
frame {f1(s), f2(s)} is related to the fixed frame {e1, e2 �0}
by

Where R is the set R ∈ SO(2) of orthonormal matrices,
namely R ∈ {R ∈ �2×2 �RR* = I2, �R� = +1}. R* denotes the
transpose of R.

is the representation of the rotation matrix in terms of
the polar coordinate α. As an angle α describes the cir-
cular motion of the tangent vector � as well as the nor-
mal vector �.

The Frenet equations are the derivational equations
f´ = e(R´)* = fR(R´)* = fΩΩ* where ΩΩ := R´R* denotes the
Cartan matrix, as an antisymmetric matrix subject to the
so(2) algebra. ΩΩ ∈ �2×2 as an antisymmetric matrix is
structured by only one nonvanishing element, namely
ω12 =κ(s), called curvature of the planar curve. 

We are going to derive the angular representation of cur-
vature κ(s). An explicit writing of the identity f = eR* is 

differentiated to

Indeed prime differentiation refers to differentiation
with respect to arc length s. The final result of the differ-
entiation we collect in
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For the proof we just have to identify ω12 =κ(s) within
f 1́and f 2́ , respectively. A clothoid may now be defined as
such a curve whose product of curvature radius r(s) :=

1/κ(s) and its arc length s is a positive constant, namely
rs = a2. Conversely we take advantage of
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described by solving the initial value problem α´ = κ(s) =
s/a2, α0 = α(s0), α´0 = α´(s0), solved by

The circular motion of the tangent vector �(s) as well as
normal vector �(s) of the clothoid can be conveniently

covering �2 appear. They can be thought as conformal
coordinates of type Gauss-Krueger or UTM with respect
to an International Reference Ellipsoid, e.g. WGS 80. In
comparing the left and right representation of the tan-
gent vector x´(s) we are led to the system of differential
equations of first order which govern the computation of
(x, y) coordinates from the orientation parameter α of
the tangent map �(s) ∈ �s� → �1, namely

1-2 Series expansion of the Fresnel integrals

If we integrate directly these differential equations, in
particular with respect to α (s) representing via
Corollary 1.3 the clothoid �, we are led to the famous
Fresnel integrals. Such an approach is not suited here
since first Fresnel integrals are only tabulated and
second they are too inflexible to account for those parts
of the clothoid � which are by purpose interrupted by
circles and straight lines. Instead a local representation is
searched for which can be easily adjusted to curve sec-
tions of type circle and/or straight line. Our result of in-
tegration (x´, y´), respectively, is collected in

For the proof we have to find the general solution of the
homogeneous equation α´ = 0 and a particular solution
of the inhomogeneous equation α´ = s/a2. First the gener-
al solution of the homogeneous equation is

Second a particular solution of the inhomogeneous
equation α´ = s/a2 is based upon the integral

The superposition of the general solution of the homo-
geneous equation and of the particular solution of the in-
homogeneous equation leads directly to the result of
Corollary 1.3.

The clothoid � ⊂ �2 isometrically embedded in �2 has
finally to be constructed from its curvature κ(s) =
�x´́ |�(s)� indeed a problem of global differential geomet-
ry. Since in the first step we have already characterized
the circular motion of its tangent vector as well as its
normal vector, in the second step we shall concentrate on
its embedding function x(s). The tangent vector x´(s) at
the point s enjoys a particular form in the ambient space
�2, namely

Here, for the first time Cartesian coordinates (x, y)
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For the proof we depart from the integrals 

subject to
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By means of the uniformly convergent power series of
type cos(α0 + ∆α) and sin (α0 + ∆α) given in Table 1.1 and
the powers ∆αn = (α0 + ∆α)n given in Table 1.2 up to
n = 5 we are able to compute the fundamental integrals
of Fresnel type outlined in Table 1.3. Indeed due to uni-
form convergence we can apply termwise integration.
A fill in of these integrals of order one, two, three, four,
five and six into (x – x0, y – y0) ordered according to the
power of ∆s := s – s0 leads directly to (1.17) and (1.18).

1-3 Univariate series inversion

In many applications the clothoid is uncomfortably
parameterized in terms of the arc length s – s0 with re-
spect to an initial point (x(s0), y(s0)). We are going before-
hand to derive the parameterization y – y0 = f (x – x0) or
∆y(∆y) of the clothoid in terms of the abscissa ∆x := 
x – x0. The technique we apply is the inversion of a uni-
variate homogeneous polynomial of degree n, e.g. accord-
ing to E. W. GRAFAREND, T. KRARUP and R. SYFFUS

(1996), being outlined in Table 1.4. As soon as we have
inverted ∆x(∆s) towards ∆s(∆x), we replace ∆s(∆x) with-
in the power series ∆y(∆s). The result is presented in

which is repaced in ∆y(∆s) of type (1.18).
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Example 1.1
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A series expansion of (1.24), (1.25) according to Table
1.1 leads directly to (1.17) with κ 0́. = 0. Similarly a series
expansion of the root in (1.26) approaches (1.23) for
κ 0́. = 0.

Examples 1.1 and Example 1.2 have clearly documented
that the fundamental local representation (1.17), (1.18)
as well as (1.23) of the clothoid contains the circle and
the straight line as special cases. Indeed this has been
one target function why we developed (1.17), (1.18), and
(1.23).

1-4 Case studies

For the case studies we have collected the initial value
data of Table 1.5 for various degrees of approximation.
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Example 1.2
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Figure 1.1: Local representation of the circle by (1.23),
κ0 = 1/500, κ0́ = 0, α0 = 10°, x0 = y0 = 0, s0 = 0, various
degrees of approximation.

Figure 1.2: Local representation of the circle by (1.23),  
κ0 = 1/500, κ0́ = 0, α0 = 10°, x0 = 200, y0 = 200, s0 = 0,
various degrees of approximation.

Figure 1.5: Local representation of the circle by (1.23),  
κ0 = 1/500, κ0́ = 0, α0 = 45°, x0 = 200, y0 = 200, s0 = 0,
various degrees of approximation.

Figure 1.3: Local representation of the circle by (1.23),  
κ0 = 1/500, κ0́ = 0, α0 = 10°, x0 = 200, y0 = 200, s0 = 50,
various degrees of approximation.

Figure 1.4: Local representation of the circle by (1.23),  
κ0 = 1/500, κ0́ = 0, α0 = 45°, x0 = y0 = 0, s0 = 0, various
degrees of approximation.
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Figure 1.6: Local representation of the circle by (1.23),  
κ0 = 1/500, κ0́ = 0, α0 = 45°, x0 = 200, y0 = 200, s0 = 50,
various degrees of approximation.

Figure 1.8: Local representation of the circle by (1.23),  
κ0 = 1/500, κ0́ = 10–6, α0 = 45°, x0 = y0 = 0, s0 = 0, various
degrees of approximation.

Figure 1.7: Local representation of the circle by (1.23),  
κ0 = 1/500, κ0́ = 10–6, α0 = 10°, x0 = y0 = 0, s0 = 0, various
degrees of approximation.

Summary

High-speed-railways / bullet trains / Transrapids /
need “extreme reliable control systems” (extasy)
to avoid catastrophic events. Here we conse-
quently focus on two sensitive problems related
to extasy: (i) a local high resolution representa-
tion of the track design (clothoid, circle, straight
line) in UTM map matching coordinates is
given. (ii) The Mixed Model (universal Kriging)
is used to discriminate measurement errors from
track displacements. Part I reviews the local
representation of the clothoid (special case: circle
straight line) which is needed in the expert case
of extasy.

Zusammenfassung

Hochgeschwindigkeitstrassen, sog. Stoßwellen-
züge / Transrapid / benötigen extrem zuverlässige
Überwachungssysteme („extasy“), um katastro-
phale Unglücksfälle zu vermeiden. Auf dem Weg
zu „extasy“ behandeln wir zwei Sensibilitätsprob-
leme: (i) wir entwickeln eine hochauflösende
Darstellung des Trassenentwurfes (Klothoide,
Kreis, Gerade) in UTM / Gauß-Krüger „Map
Matching“ Koordinaten. (ii) Das zugeordnete
Gemischte Modell (universelles „Kriging“) wird
vorgestellt, insbesondere um Messfehler von
einer Trassenverschiebung zu trennen. Der erste
Teil konzentriert sich auf die lokale, hochauf-
lösende Darstellung der Klothoide (Spezialfall:
Kreis, Gerade), Grundlage für den Aufbau einer
trassenorientierten Wissensbasis.


