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1 Introduction 

A serious problem that often occurs in geodetic data
processing is the presence of multicollinearity among the
columns of the design matrix, causing highly unstable
least squares (LS) estimators of the unknown parame-
ters. As alternatives to the LS estimator, many biased
estimators, such as ordinary ridge estimator, principal
components estimator, combining ridge and principal
components estimator, combined principal components
estimator, single-parametric principal components esti-
mator and latent root estimator etc. (cf. GUI, DUAN and
ZHU 1999; GUI and LIU 2000) have been proposed and
shown to be a quite satisfactory solution to the multicol-
linearity.

The biased estimation problem in Gauss-Markov model
with constraints is considered when some multicollinea-
rities exist among the columns of the design matrix in
this paper. We propose a class of restricted biased esti-
mators by grafting the (unrestricted) biased estimation
philosophy into the restricted least squares (RLS) esti-
mator, and establish some important properties. Many
well-known (unrestricted) biased estimator, e.g. ordi-
nary ridge estimator, principal components estimator,
combining ridge and principal components estimator,
combined principal components estimator, single-para-
metric principal components estimator etc. are extended
to Gauss-Markov model with constraints. A numerical
example is presented to illustrate that these restricted
biased estimators are better than the RLS estimator
when some multicollinearities exist.

2 Restricted generalized shrunken least
squares estimation

We consider the Gauss-Markov model with constraints 

where L is an n × 1 vector of observations with an  n × n
positive definite weight matrix P, A is an n × t design ma-
trix with rank (A) = t, X is a t × 1 vector of unknown
parameters, ∆ is an observation error vector, C is an s × t
matrix of known coefficients with rank (C) = s and W is
an s × 1 vector of known constants.

It is well known that the restricted least squares (RLS)
estimator of X denoted by X̂RLS, which is obtained by
minimizing ∆T P∆ subjected to the constraints CX = W,
can be written as 

X̂RLS = X̂LS + N –1 CT (CN –1 CT)–1 (W – CX̂LS) (2)

where N = AT PA and X̂LS = N –1 AT PL is the unrestric-
ted LS estimator for X (cf. KOCH 1987; RAO and
TOUTENBURG 1995).

It is easily to prove that when some multicollinearities
exist among the columns of the design matrix A, the RLS
estimator, same as the unrestricted LS estimator, is no
longer a good estimator. In response to the perceived de-
ficiencies with the RLS estimator, we propose a new esti-
mator by grafting the generalized shrunken least squares
(GSLS) estimation technique (cf. GUI and LIU 2000) phi-
losophy into the RLS estimator, which may be designa-
ted the restricted generalized shrunken least squares
(RGSLS) estimator and be denoted by X̂RGSLS (D):

X̂RGSLS (D) = QDQT X̂RLS (3)

where D = diag (d1, . . . , dt) is called a generalized shrink-
ing parameter matrix, Q is an orthogonal matrix such
that QT NQ = Λ = diag (λ1, . . . , λt). We assume, without
any loss of generality, that λ1 ≥ · · · ≥ λt > 0.

Obviously, the RLS estimator refers to the case where
D = It. It is easily seen from (3) that X̂RGSLS (D) is always
a restricted biased estimator of X unless D = It. Further,
according to concrete problems in geodetic data process-
ing, we can generate many useful restricted biased esti-
mators by appropriate choices of the generalized shrink-
ing parameter matrix D. Several important estimators
are given next.
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1. When D = Λ (Λ + kIt)–1, we get 

X̂ROR (k) = X̂RGSLS (Λ (Λ + kIt)–1) = (It + kN –1)–1 X̂RLS    (4)

which is called a restricted ordinary ridge (ROR) esti-
mator, where k > 0 is called a ridge parameter.

2. When 

we get 

which is called a restricted principal components (RPC)
estimator, where

3. When 

we get 

which is called a restricted combining ridge and princi-
pal components (RCRPC) estimator, where Λr =
diag (λ1, . . . , λr) and k > 0.

4. When 

we get 

which is called a restricted combining principal compo-
nents (RCPC) estimator, where Λm = diag (λ1, . . . , λm ),
Λt–m = diag = (λm+1, · · · , λt), and suppose there exists
1 ≤ m ≤ t such that λm > 1 ≥ λm+1.

5. When 

we get 

which is called a restricted single-parametric principal
components (RSPPC) estimator, where θ ∈ (0,1) is cal-
led a stable parameter.

Obviously, each estimator given here is the application
of the recently developed unrestricted biased estimation
theory in Gauss-Markov model to one with constraints,
and with which methods of estimating parameters in
Gauss-Markov model with constraints will be greatly im-
proved.

We can prove the following properties of the RGSLS
estimator by using the same method as GUI and LIU

(2000) did.

Theorem 1. If

XT TX < σ2
0

then 

MSE (X̂RGSLS (D)) < MSE (X̂RLS)

that is, the RGSLS estimator X̂RGSLS (D) is superior to
the RLS estimator in the sense of the reduced MSE,
where

T = Q (It – D) (QT MQ – DQT MQD)–1 (It – D) QT

M = N –1 – N–1 CT (CN –1 CT)–1 CN –1

Theorem 2. The RGSLS estimator X̂RGSLS (D) is admis-
sible for X in the class of all linear estimators under
quadratic loss if and only if 

0 ≤ di ≤ 1, i = 1, . . . , t

that is, there does not exist a linear estimator which is
uniformly better than the RGSLS estimator in terms of
the MSE.

Numerical example

For illustrative purpose, we consider a geodetic network
as shown in Fig. 1. The angles l1, . . . , l12 are measured
and have the following values:

l1 = 32°49´18.05´´ l5 = 75°52´53.00´´ l9 = 31°25´15.15´´

l2 = 22°04´22.82´´ l6 = 20°00´15.41´´ l10 = 112°13´30.06´´

l3 = 125°06´18.91´´ l7 = 130°50´20.87´´ l11 = 39°05´39.36´´

l4 = 84°06´50.16´´ l8 = 17°44´21.52´´ l12 = 28°40´46.51´´
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Fig. 1: A simulated geodetic network
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All observations are uncorrelated with equal weight and
the weight of every angle is one. The standard deviation
of each angle observation is assumed to be mα = ±1.50´´.
The coordinates of two known control points A and B
are listed as follows:

XA = 6504899.84 (m) YA = –49869.19 (m)

XB = 6508781.94 (m) YB = –48900.56 (m)    

The distance between P1 and P3 is known and is equal to
22979.56 (m).

We can easily get A, L, C and W as 

L = (–0.95, 0.82, –0.09, 1.16, –0.99, –1.59, –0.13, –0.47,
–1.85, –0.94, –1.80, –1.33)T

C = (0.00, 0.00, 1.27, –15.07, –1.27, 15.07)

W = –0.0005

Some multicollinearities between the columns of the de-
sign matrix A are serious, which is reflected in the con-
dition number of the normal equation matrix
AT PA, k = 144.6. Tab. 1 lists the estimates of the incre-
ments δx and δy to the approximate coordinates of three
unknown points P1, P2 and P3 by using the RLS estima-
tion and RGSLS estimation, respectively, where the ap-

proximate coordinates assigned to points P1, P2 and P3
to begin with. It is obvious to see that the RGSLS esti-
mator is better than the RLS one when some multicolli-
nearities exist.

Tab.1. Coordinate corrections of the three unknown points
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δx1 δy1 δx2 δy2 δx3 δy3

RLSE – 0.21 0.20 – 1.76 0.56 0.43 0.75
RORE (k = 1.58) – 0.15 0.12 – 0.20 0.21 0.41 0.29
RPCE (r = 1) – 0.05 – 0.11 0.02 – 0.03 0.02 0.12
RCRPCE (r = 2, k = 1 0.01 0.04 0.03 – 0.04 0.01 0.02
RCPCE (m = 3) 0.09 0.04 – 0.43 0.54 0.68 0.22
RSPPCE (θ = 0.01) –0.26 0.15 – 0.02 – 0.01 0.21 0.21
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Analyse der Entwicklung der russischen Kartographie
Der 1938 erschossene sow-
jetische Wirtschaftswissen-
schaftler N. D. Kondrat’ev
begründete eine Planungs-
theorie, nach der sich die
Weltwirtschaft quasiperio-
disch mit Höhen und Tiefen
alle 50 Jahre entwickelt.
Auf dieser Grundlage wur-
de die Evolution der russi-
schen Kartographie seit
1701 anhand der staatlichen
Organisationsstruktur, der
Technologien für die astro-
nomischen, geodätischen
und kartographischen Ar-
beiten, der Technik und der
Geräte sowie der Ausbil-

dung der Fachkräfte mit
Hilfe von 200 Daten aus be-
kannten historischen Quel-
len in Gruppen von 10 Jah-
ren dargestellt (Abb. 1).
Die durchgehende Linie
gibt die Dynamik der Öko-
nomie nach Kondrat’ev an,
ergänzt durch Untersu-
chungen von Frank und
Mandel.
Der Vergleich der Ergeb-
nisse mit den Kondrat’ev-
schen Zyklen zeigt, dass die
maximale Zahl wesentli-
cher Ereignisse an den Spit-
zen der ökonomischen Ent-
wicklung liegt. Die Interpo-

lation der Kondrat’evschen
Daten deutet auf Krisiser-
scheinungen Ende des 20.
Jahrhunderts hin.

Aus: Evoljucija otečestven-
noj kartografii v svete teorii

dlinnych voln Kondrat’eva.
Von Tarelkin, E. P. – Geo-
dez. i Kartogr. Moskva
(2000) 5, S. 38–39

DEUMLICH

Abb. 1: Evolutionszyklen der Ökonomie und Kartographie


