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Abstract: The bicycle is currently experiencing an impressive revival as sustainable transport mode. Numerous bicycle promotion 
initiatives have contributed to a significant increase of the bicycle’s modal share during the past years. Nevertheless, safety concerns 
are among the most relevant factors that keep people from using the bicycle for their utilitarian trips. 

Mobility – and in consequence bicycling safety – is spatial by its very nature. Thus, introducing the spatial perspective into bicycling 
promotion and safety research bears great potential with regard to spatial models, simulation and analysis. This review paper pro-
vides an overview of current research at the intersection of spatial information and bicycling safety and discusses the respective 
contributions in a broader context from literature.
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RÄUMLICHE INFORMATION ZUR ERHÖHUNG DER RADVERKEHRSSICHERHEIT

Zusammenfassung: Das Fahrrad erlebt aktuell eine bemerkenswerte Renaissance als nachhaltiges Verkehrsmittel. Bedingt durch 
zahlreiche Initiativen zur Radverkehrsförderung ist der Anteil des Radverkehrs in den meisten europäischen Städten während der 
letzten Jahre gestiegen. Allerdings verhindern Sicherheitsbedenken mitunter eine weitere Steigerung der Beliebtheit des Fahrrads als 
Alltagsverkehrsmittel.

Mobilität – und damit auch die Radverkehrssicherheit – ist räumlich. Folglich birgt die Verbindung von räumlicher Information und 
Radverkehrsförderung bzw. Forschung im Bereich der Radverkehrssicherheit ein großes Potenzial. Dieser Beitrag bietet einen Über-
blick über aktuelle Forschungsarbeiten an der Schnittstelle von räumlicher Information und Radverkehrssicherheit. Die jeweiligen 
Beiträge der räumlichen Perspektive werden vor dem Hintergrund eines breiten Literaturbefunds diskutiert.
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1	 BICYCLING AND SAFETY
Bicycling is currently experiencing an im-
pressive revival as sustainable mobility op-
tion for a number of good reasons, espe-
cially in urban environments. It is environ-
mentally friendly (Lindsay et al. 2011, 
Johansson et al. 2017), healthy (Götschi et 
al. 2015), socially equitable (Pucher & 
Buehler 2008) and economically benefi-
cial, both for individuals as well as for soci-
ety (Fishman et al. 2015, Gilderbloom et 
al. 2016, Brey et al. 2017). Because of 
these advantages and increasingly nega-
tive impacts of car-centered policies and 
transport systems, governments around the 
world have been starting to heavily invest 
into bicycling promotion (Handy et al. 
2014, Winters et al. 2017), with north-
western European countries as role models 
(Pucher & Buehler 2008).

Although many cities and regions are 
very successful in promoting bicycling and 
are witnessing an increase of the bicycle’s 
modal share, substantial barriers for a fur-
ther increase still exist. Among them, safety 
concerns are regarded as being the most 
prevalent. Winters et al. (2011) identified 
safety aspects as most influential deterrent 
for bicyclists in Vancouver. In another study, 
Winters et al. (2012) found that perceived 
safety corresponds well with the de facto 
levels of safety, with minor discrepancies 
between perceived and observed safety of 
bicycle tracks (perceived as less save as 
they actually were). Findings on the deter-
ring influence of safety concerns are further 
disaggregated by Sanders (2015), who 

found that the willingness to choose the bi-
cycle is negatively impacted by perceived 
safety risk factors. However, this influence 
decreases with higher bicycling frequency. 
On the other hand, the awareness for safe-
ty threats increases with experience, mainly 
due to near miss events. Additionally, Bee-
cham & Wood (2013) point to remarkable 
gender-differences in risk mitigation strate-
gies: female bicyclists prefer quiet roads 
and parks on their routes much more than 
male bicyclists. Werneke et al. (2015) 
complement findings from surveys and 
crash data analysis by investigating safety-
critical events in a naturalistic cycling study. 
They found that other road users were in-
volved in the majority of safety-critical 
events. Around 20% of the events could be 
traced back to inadequate infrastructure. 
Nevertheless, infrastructure is crucially im-
portant, especially for children. Zhou et al. 
(2010) conducted a study among elemen-
tary and middle schools in Florida and 
found safety and security concerns as pri-
mary reason for the low share of school 
children bicycling to school. Emond & 
Handy (2012) on the other hand, conclud-
ed that for a city with a dense network of 
adequate bicycle infrastructure, such as 
Davis, CA, the main mode choice factor 
for pupils is the perceived distance to 
school. In any case, adequate and safe in-
frastructure is the backbone of any success-
ful bicycling promotion activity. There is 
clear evidence for the relation of environ-
mental factors, commonly summarized as 
“bikeability” and levels of bicycling (Ma & 

Dill 2016, Sallis et al. 2016, Winters et 
al. 2016).

The number of fatalities in road traffic 
has been sharply decreasing since the 
1970s all over Europe (Bergel-Hayat & Zu-
kowska 2015). However, the decrease is 
less significant for bicyclists and even coun-
tertrends are observable in the EU (in-
crease of bicyclist fatalities between 2013 
and 2014), according to latest EU statis-
tics (European Commission 2016). The 
share of bicyclists among all fatalities is still 
comparatively high, with large regional 
variabilities. The rise of the bicycle as utili-
tarian mode is regarded as one contribut-
ing factor to the slower decrease of fatali-
ties of bicyclists (Evgenikos et al. 2016), 
although this contrasts the “Safety-in-num-
bers” effect, on which a broad consensus 
does exist in literature (Elvik & Bjørnskau 
2017). Contrary to EU-wide develop-
ments, the Netherlands were successful in 
considerably reducing the number of bicy-
cle crashes with a mix of measures, which 
address infrastructure, road users and vehi-
cles (Schepers et al. 2017).

Putting together the three arguments so 
far – namely the potential of the bicycle as 
utilitarian mobility option, safety concerns 
as barrier for further bicycle usage and the 
relatively slow decrease of crashes and fa-
talities among bicyclists – makes the need 
for comprehensive actions evident. Howev-
er, until recently bicycling safety has been 
researched within very different domains, 
ranging from trauma medicine to engineer-
ing, planning, bio-mechanics, law and 

Figure 1: Spatial facets of bicycling safety (left) and relevant geographical concepts for crash analysis (right)
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psychology, only to name a few. In order 
to overcome these “island solutions” and 
account for the complexity of bicycling 
safety we argue for integrated, multi-disci-
plinary approaches for promoting safe bi-
cycling. As it will be shown in the remain-
der of this paper, geographical information 
systems have the capability to relate vari-
ous perspectives on bicycling safety to 
each other, using the geographical space 
as common reference. Moreover, an ex-
plicitly spatial approach addresses the fun-
damental spatial characteristics of bicy-
cling safety, which are often neglected in 
domain-specific solutions.

The contribution of the spatial perspec-
tive to bicycling safety research is the main 
subject in the following section. Then, the 
potential of spatial models, analyses and 
simulations is demonstrated with reference 
to previous and current studies by the au-
thor, before the main arguments are reflect-
ed and future research paths are illuminat-
ed in a concluding section.

2  THE SPATIAL PERSPECTIVE
Mobility is spatial by its very nature. It can 
be defined as movement of people or 
goods in space. Being mobile on a bicycle 
means to ride the bicycle from one location 
to another. Accordingly, bicycling safety 
becomes manifest in geographical space. 
Spatial facets of bicycling safety – from the 
suitability of the physical environment to the 
location of individually perceived safety 
threats – can be modeled and analyzed in 

the spatial dimension (Figure 1, left). How-
ever, most studies on bicycling safety ne-
glect location as a co-determining attribute 
of safety. Especially in the case of bicycle 
crash analyses, fundamental geographical 
concepts, such as proximity, spatial auto-
correlation and topology (Figure 1, right), 
are hardly ever considered (Vandenbulcke-
Plasschaert 2011).

Apart from the consideration of the fun-
damental spatial characteristics of bicy-
cling safety and bicycle crashes in particu-
lar, an explicitly spatial perspective also fa-
cilitates integrated approaches for the 
mitigation of bicycling safety risks. Bicycle 
safety is a comparatively complex phenom-
enon that can be approached from several 
perspectives. They can be roughly divided 
into three categories: environment, vehicle 
and user. The environment, such as infra-
structure (Teschke et al. 2012) or lighting 
conditions (Wanvik 2009), and the user’s 
perception of it (Sanders 2015) can be re-
lated to locations and thus be modelled in 
a geographical information system (GIS). 
Using the geographical space as common 
reference, multiple perspectives on the 
road space can be related to each other in 
order to account for the multi-facetted com-
plexity of bicycling safety (Loidl 2016).

Introducing the spatial perspective into 
bicycling safety research can be done from 
three angles: spatial models, spatial analy-
sis and spatial simulation. Spatial models 
aim to identify influential factors and relate 
them to each other in a geographical con-

text in order to gain an adequate represen-
tation of real-world bicycling safety. How-
ever, it is important to be aware that models 
represent reality always in an abstract and 
generalized way (Nyerges 1991, Good-
child 1992). Spatial simulations are usually 
built upon spatial models and allow for 
“what-if” investigations (Batty & Torrens 
2005) and the development of future sce-
narios. Spatial analyses gain additional in-
sights through relating real-world phenom-
ena or events to their respective spatial con-
text. In the following section, all three 
spatial approaches to bicycling safety are 
further elaborated.

3  �INTRODUCING THE SPATIAL 
PERSPECTIVE

This section provides an overview of how 
the three, aforementioned spatial ap-
proaches have been introduced into bicy-
cling safety research. For this, I will primar-
ily refer to previously published studies and 
ongoing research. Each of the examples is 
then discussed in the context of existing lit-
erature.

3.1  SPATIAL MODELLING
Spatial models are suitable to link different 
factors that contribute to the complexity of 
bicycling safety to each other. A model-
based approach leverages existing at-
tempts to assess the road space with re-
gard to bicycling safety and infrastructure 
suitability. According to Loidl & Zagel 
(2014), expert assessment, crash black

Figure 2: Spatial models represent real-world bicycle safety. Spatial analyses relate real-world phenomena and events to each other and put them into a spatial 

context. Spatial simulations are commonly built upon spatial models, while employing spatial analysis routines.
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spot identification and user feedback are 
all suffering from conceptual and practical 
drawbacks, which make them inappropri-
ate for a global, transferable and adapta-
ble application. Thus, they developed a 
road assessment model that generates an 
indicator value, expressing the safety level 
for bicyclists. The general concept goes as 
follows: based on literature review, crash 
analysis, experts’ and users’ feedback con-
tributing factors to objective (Beck et al. 
2016) and perceived (Winters et al. 
2012) safety threats are identified and 
compiled in a weighted assessment model 
(Eq. 1).

3.1 Spatial Modelling 
Spatial models are suitable to link different factors that contribute to the complexity of bicycling safety to each 
other. A model-based approach leverages existing attempts to assess the road space with regard to bicycling 
safety and infrastructure suitability. According to Loidl & Zagel (2014), expert assessment, crash blackspot 
identification and user feedback are all suffering from conceptual and practical drawbacks, which make them 
inappropriate for a global, transferable and adaptable application. Thus, they developed a road assessment model 
that generates an indicator value, expressing the safety level for bicyclists. The general concept goes as follows: 
based on literature review, crash analysis, experts’ and users’ feedback contributing factors to objective (Beck et 
al. 2016) and perceived (Winters et al. 2012) safety threats are identified and compiled in a weighted assessment 
model (Eq. 1). 

1

1

n
i i i

n
i i

s w
Index

w








 (1) 

The different values of each indicator are ranked and weighted (si). The influence of each indicator is reflected 
by a weight (wi) that can be manually altered. The model in Figure 3 (Wendel 2015) is purely edge-based and 
considers the following influential factors (indicators): type of bicycle infrastructure, dedicated bicycling routes, 
road category, maximum speed, motorized traffic volume, number of lanes, pavement, parking, number of 
adjacent segments (indicating the complexity of junctions), car parking along the road, gradient, tram tracks and 
land use (Loidl & Zagel 2014). It is designed to be employed on the level of single road segments. For this, a 
topologically correct network graph, together with attributes that adequately describe the road space are required. 
Before the model can be run, the respective data model and attribute structure of different data sources need to 
be considered and the definition of the indicators and their characteristic values accordingly adapted. The model 
can be fueled by commercial (such as from Here), authoritative (such as the Austrian GIP) and open (such as 
OpenStreetMap) data sources. 

The design of the assessment model proposed by Loidl & Zagel (2014) facilitates iterative calibration and is 
spatially and functionally scalable, adaptable and produces comparable outputs. It can be used for a variety of 
purposes, ranging from planning to routing (see Loidl 2016 for application examples).  

 
Figure 3: Web-based assessment model of a road network (http://gimobility.sbg.ac.at/network-assessment/index.html, 
accessed 11/2017) 

To the best of our knowledge, this model is the only one that is entirely network based, can be iteratively 
calibrated and adapted, and does not require manual inputs, but completely relies on existing data. The 
assessment model for the city of Augsburg by Jonietz & Timpf (2012) comes closest to Loidl & Zagel (2014). 
However, the differentiation between the values of the considered indicators is fixed and rather general classes in 
the model by Jonietz & Timpf (2012). Moreover, the model components are non-weighted, which does not 
sufficiently reflect the evidence from literature, which shows that the influence of influential factors vary 
significantly (Winters et al. 2011, Skov-Petersen et al. 2018). Conceptually similar models are mostly based on 
spatial aggregates, such as grid cells, census districts or cities. The Bike Score index (Winters et al. 2016) is 
based on 100 m² raster cells and expresses “bike-friendliness”. This index value is based on spatial data such as 
bicycle lane density, topography or number of amenities within a defined catchment area. Ma & Dill (2016) 
define bikeability as composite index where the following factors contribute: access to bicycle infrastructure, 
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The design of the assessment model 
proposed by Loidl & Zagel (2014) facili-
tates iterative calibration and is spatially 
and functionally scalable, adaptable and 
produces comparable outputs. It can be 
used for a variety of purposes, ranging 
from planning to routing (see Loidl 2016 
for application examples). 

To the best of our knowledge, this mod-
el is the only one that is entirely network 
based, can be iteratively calibrated and 
adapted, and does not require manual in-
puts, but completely relies on existing data. 
The assessment model for the city of Augs-
burg by Jonietz & Timpf (2012) comes clos-
est to Loidl & Zagel (2014). However, the 
differentiation between the values of the 
considered indicators is fixed and rather 
general classes in the model by Jonietz & 
Timpf (2012). Moreover, the model compo-
nents are non-weighted, which does not 
sufficiently reflect the evidence from litera-
ture, which shows that the influence of influ-
ential factors vary significantly (Winters et 
al. 2011, Skov-Petersen et al. 2018). Con-

ceptually similar models are mostly based 
on spatial aggregates, such as grid cells, 
census districts or cities. The Bike Score in-
dex (Winters et al. 2016) is based on 100 
m² raster cells and expresses “bike-friendli-
ness”. This index value is based on spatial 
data such as bicycle lane density, topogra-
phy or number of amenities within a de-
fined catchment area. Ma & Dill (2016) 
define bikeability as composite index 
where the following factors contribute: ac-
cess to bicycle infrastructure, number of fa-
cilities within a specific distance, street con-
nectivity and topography. An exception to 
the grid-based index calculation is the Net-
work Safety Index (NSI), which was devel-
oped in the city of Amsterdam and provides 
very detailed information on safety perfor-
mance of roads (de Kievit 2017). Howev-
er, the required input data (investigation of 
the road profile every 25 meters) can only 
be acquired with a very high effort.

3.2  SPATIAL SIMULATION
Knowing when, where and how many bi-
cyclists are on the road is decisive for prac-
tical questions, such as monitoring and 
management or planning and infrastructure 
building. In the context of bicycling safety, 
data on bicycle traffic flows is crucially im-
portant for the interpretation of incidents. 
Conclusions on safety risks cannot be 
drawn from bicycle crash data in the ab-
sence of a sound statistical population.

Of course, the variety of well-estab-
lished methods for simulating traffic flows is 

Figure 3: Web-based assessment model of a road network (http://gimobility.sbg.ac.at/network-assessment/index.html, accessed 11/2017)
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huge. It ranges from demand-based mod-
els (McNally 2008) to flow-model simula-
tions (Helbing et al. 2002), cellular auto
mata models (Maerivoet &  De Moor 2005) 
and agent-based models (Bazzan & Klügl 
2014). However, the vast majority of these 
simulation models focus on public transit 
and car traffic. Traffic models for bicyclists 
and pedestrians are usually only available 
at the micro-scale. Because of this, investi-
gations of bicycle crash data commonly 
use highly aggregated flow data (estima-
tions based on mobility surveys or punctual 
counting stations) or alternative statistical 
populations, such as number of inhabit-
ants. Using aggregated flow data for in-
vestigating geo-located crash data implic-
itly introduces the wrong assumption of 
evenly distributed bicycle traffic. Alterna-
tively, bicycle crash data are aggregated 
as well and used in an epidemiological 
study design. However, in doing so the 
spatial information disappears and the 
spatial characteristics of bicycle crashes 
cannot be considered anymore. Using al-
ternative statistical populations, such as the 
number of inhabitants, can lead to signifi-
cant biases as well.

 A major reason for why virtually no bi-
cycle flow models exist on the scale level of 
a city (mesoscopic models) is the difficulty to 
describe and predict bicyclists’ behavior. Bi-
cyclists – similar to pedestrians – are by far 
less homogeneous than car drivers in many 
regards, such as travel speed, route prefer-

ences, interaction strategies etc. (Damant-
Sirois et al. 2014, Füssl & Haupt 2017). 
Agent-based simulation models are suitable 
to reflect the multitude of individual behav-
ior. In an ongoing research project (FamoS, 
https://gimobility.zgis.at/en/famos/) the 
concept proposed by Wallentin & Loidl 
(2015) is currently extended and an agent-
based bicycle flow model, which simulates 
bicycling mobility at a spatio-temporal reso-
lution of meters and minutes, will be re-
leased by the end of 2018. This simulation 
model brings together analytical capabili-
ties (overlay, spatial statistics, network anal-
ysis) and the power of agent-based mode-
ling. Spatial data on population metrics, fa-
cilities and road infrastructure as well as 
results from mobility surveys are used as in-
puts. The emergent bicycle flows result from 
simulated activities, mode choice and route 
choice for every single agent. We were 
able to simulate 150.000 agents for a 
whole day (24h) within approximately 
5 hours of processing time. With this model 
it is possible for the first time to consider bi-
cycle flows as statistical population in sub-
sequent crash data analyses at the highest 
spatial resolution as well as testing for vari-
ous interventions (infrastructure measures, 
promotion campaigns etc.), as it is illustrat-
ed in Figure 4.

3.3  SPATIAL ANALYSIS
Bicycle crashes are incidents that take 
place at a specific location and are partly 

determined by space. Thus, the spatial 
analysis of bicycle crashes contributes to a 
better understanding of a multifaceted phe-
nomenon. The current body of literature is 
rich of bicycle crash analysis. However, 
only in a minority of studies the spatial fac-
et is explicitly considered (Vandenbulcke-
Plasschaert 2011).

In a recent study Loidl et al. (2016a) 
used the geographic coordinates, which 
are attached bicycle crash reports, and the 
time stamp to explore urban bicycle crash-
es in the spatial and temporal dimension. 
In contrast to previous studies, the network-
bound character of bicycle crashes was 
accounted for in the spatial analysis. With 
a purely explorative study design distinct 
patterns and temporal variabilities were re-
vealed and further used for in-depth investi-
gations. Many of these spatial and tempo-
ral variabilities (seasonal effects, clusters, 
regional particularities) would have re-
mained undetected in any less detailed ap-
proach, although this information is crucial 
for targeted counter measures.

A substantial shortcoming of explora-
tive studies of bicycle crash frequencies is 
their limited conclusion on risk or crash 
probabilities. For this, a statistical popula-
tion with the same spatial resolution is re-
quired. Loidl et al. (2016b) used the out-
come of the spatial simulation of bicycle 
flows (Wallentin & Loidl 2015) and related 
the geo-located bicycle crash data to the 
simulated traffic volume. Calculating crash 

Figure 4: The left map shows the result of the simulation model. The effect (traverses per day) of infrastructure measures on the distribution of bicycle flows be-

comes evident in the right map.
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rates on the local level inevitably results in 
a trade-off between accounting for the spa-
tial heterogeneity of crash occurrences and 
the statistical robustness of results. More
over, the modifiable areal unit problem 
(MAUP) impacts the results. In order to ac-
count for these spatial implications, Loidl et 
al. (2016b) mapped crash rates on differ-
ent levels of spatial aggregation and linked 
it to mapped confidence intervals (CI). 
With this, the optimal size of the spatial ref-
erence units can be identified for a given 
study area. Plotting these two views (crash 
rate, CI) in a scatter plot allows for deriving 
information on MAUP effects; especially 
the scale effect becomes obvious.

In contrast to existing studies, which ei-
ther rely on very vague flow estimations 
(Lusk et al. 2013), use aggregated data 
(Delmelle et al. 2012), or neglect the spa-
tial dimension entirely (Martínez-Ruiz et al. 
2015), Loidl et al. (2016b) is the first study 
that generates results at the local scale.

4  CONCLUSION AND FUTURE WORK
Bicycling safety is a central issue for any bi-
cycling promotion initiative. I argued for 
why bicycling promotion needs to consider 
prevalent safety concerns and what spatial 
information can offer from a methodologi-
cal perspective. The three identified meth-
ods of spatial modeling, simulation and 
analysis were then further discussed with 
reference to previous and ongoing re-
search.

It became evident that spatial ap-
proaches lead to results that are relevant 
for a number of domains involved in bicy-
cling promotion and safety research. Spa-

tial models are able to integrate objective 
as well as perceived safety risks factors. 
Outcomes can then be linked to existing 
evidences from planning and engineering 
(physical environment) as well as to psy-
chology (perception, emotions). The bene-
fit of spatial in comparison to epidemiolog-
ical models is twofold: firstly, the spatial 
configuration of influential factors (e. g. au-
tocorrelation) can be directly considered. 
Secondly, results of the assessment model 
are mappable and thus, can be put into 
the respective spatial context. With refer-
ence to agent-based simulation models the 
strength of linking spatial analytical capa-
bilities with simulation models was demon-
strated. Again, data from very different do-
mains (engineering to social science) are 
integrated in a spatially explicit simulation 
model, which facilitates an estimation of bi-
cycle traffic at the highest possible resolu-
tion and can be used for simulating various 
interventions. Finally, the integrated analy-
sis of geo-located crash locations and the 
results from the simulated bicycle flows, al-
lows for in-depth analysis of crash rates at 
the local scale. This is especially important 
for targeted interventions and an efficient 
planning and implementation of safety 
measures, where aggregated statistics, 
such as crash rates for an entire city, are of 
minor relevance.

This paper demonstrates that the intro-
duction of an explicitly spatial perspective 
into a research area that has been largely 
dominated by non-spatial domains and 
paradigms, such as bicycling safety in our 
case, leads to additional insights. Howev-
er, several research questions, within GISci-

ence as well as in bicycling safety re-
search, remain open and need to be sub-
ject for further work:

	X 	Any attempt that improves exposure 
data will directly improve any analysis 
of bicycle crash data. Consequently, 
better bicycle flow models need to be 
developed. 

	X 	It is evident from numerous studies that 
officially reported bicycle crashes rep-
resent only a fraction of all incidents 
(crashes and near-misses). Having a 
better data basis on safety threats could 
be turned into more reliable analysis re-
sults.

	X 	The more data are being used as input 
in models, simulations and analyses, 
the higher gets the demand for data 
harmonization in terms of temporal and 
spatial resolution.

	X 	Although perceived safety threats can 
be considered in spatial models, there 
is still a need for better understanding 
of safety perception on an individual 
level. Currently bicyclists are too often 
treated as homogenous group. Thus, 
the very different needs, preferences 
and perceptions are insufficiently re-
flected in bicycling safety research.

	X 	Finally, research is needed on how to 
best turn evidences and research out-
comes into behavior change. Without 
a better understanding psychological, 
social and cultural processes gained in-
sight will not impact actual behavior.

Figure 5: Crash locations in the city of Salzburg (left) where related to simulated traffic volumes. The patterns of crash rates changes with the level of spatial ag-

gregation (top row of maps). Mapped confidence intervals (bottom row of maps) indicate the statistical robustness of rates.
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