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Efficient Interpretation of 3D Point Clouds 
by Assessing Feature Relevance
Effiziente Interpretation von 3D-Punktwolken durch 
die Abschätzung der Relevanz von Merkmalen

Martin Weinmann, Clément Mallet, Stefan Hinz, Boris Jutzi

The semantic interpretation of 3D point cloud data acquired with mobile laser scanning (MLS) systems has 
become a topic of major interest for photogrammetry, remote sensing and computer vision. In this paper, 
we propose a methodology for the semantic interpretation of point cloud data in terms of assigning each 
3D point a semantic label. Our methodology involves (1) individual neighborhoods of optimal size in order 
to provide distinctive geometric features for each 3D point and (2) feature relevance assessment in order 
to reduce the computational burden with respect to processing time and memory consumption. More 
specifically, our approach for feature relevance assessment relies on a general relevance metric composed 
of seven different, classifier-independent feature selection strategies and thus addresses different intrin-
sic properties of the given training data. The results derived for a labeled benchmark dataset with about 
1.3 million 3D points reveal that, instead of including as many features as possible in order to compensate 
a lack of knowledge about scene and data, a crucial task such as the semantic scene interpretation can 
be carried out with only few relevant features without a significant loss in classification accuracy.
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Die semantische Interpretation von 3D-Punktwolken, welche mithilfe von mobilen Laserscanning (MLS) 
Systemen aufgenommen werden, ist in den Bereichen der Photogrammetrie, Fernerkundung und  Computer 
Vision zu einem wichtigen Thema geworden. In diesem Beitrag wird eine Methodik zur semantischen 
Interpretation von Punktwolken im Sinne der Zuordnung einer semantischen Klassenzugehörigkeit zu 
jedem 3D-Punkt präsentiert. Diese Methodik nutzt (1) individuelle Nachbarschaften von optimaler Größe, 
um für jeden 3D-Punkt aussagekräftige geometrische Merkmale zu erhalten, und (2) eine Abschätzung der 
 Relevanz von Merkmalen, um den Rechenaufwand bezüglich Rechenzeit und Speicherbedarf zu reduzie-
ren. Im Speziellen basiert der Ansatz zur Abschätzung der Relevanz von Merkmalen auf  einer  allgemeinen 
Relevanz-Metrik, welche sich aus sieben verschiedenen Klassifikator-unabhängigen  Strategien zur 
Auswahl von Merkmalen zusammensetzt und dadurch verschiedene intrinsische Eigenschaften der vor-
liegenden Trainingsdaten erfasst. Die Ergebnisse für einen Standarddatensatz mit etwa 1,3 Millionen 3D-
Punkten und entsprechenden Referenzwerten bezüglich der Klassenzugehörigkeit  zeigen, dass statt der 
Nutzung von möglichst vielen Merkmalen, um fehlendes Wissen über Szene und Daten zu kompensieren, 
mit nur wenigen relevanten Merkmalen ein kritischer Schritt wie die semantische Szeneninterpretation 
durchgeführt werden kann, ohne die Klassifikationsgenauigkeit wesentlich zu verringern.

Schlüsselwörter: Mobiles Laserscanning, Punktwolke, Merkmalsextraktion, Relevanz von Merkmalen, Klassifikation, 
Interpretation
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1 INTRODUCTION

Due to the technological advancements in the last decade, mobile 
laser scanning (MLS) systems are increasingly used for fast, dense 
and reliable 3D mapping. The acquired three-dimensional rep-
resentation of a scene in the form of point cloud data with a relative-
ly high spatial resolution, in turn, represents an important prerequi-
site for further tasks such as 3D scene analysis which typically relies 
on the automatic interpretation of the acquired data. Consequently, 
the automatic interpretation of 3D point cloud data has become a 
topic of major interest in photogrammetry, remote sensing and 
computer vision.

Recent research involving mobile laser scanning data for 3D 
scene analysis focuses on a variety of subtasks such as object 
 detection (e. g. / Pu et al. 2011/, / Velizhev et al. 2012/ or / Zhou & 
Vosselman 2012/), urban accessibility analysis / Serna & Marcotegui 
2013/ or the semantic perception for ground robotics / Hebert et al. 
2012/. However, many of these subtasks rely on the results of point 
cloud classification which aims at assigning a (semantic) class label 
to each 3D point of the given point cloud and faces challenges 
arising from the complexity of 3D scenes caused by the irregular 
sampling of 3D points, varying point density and very different types 
of objects.

In this paper, we address point cloud classification and thereby 
involve approaches to quantify the importance of involved features 
in order to select only the few most relevant ones among them for 
classification. More specifically, we focus on the use of a standard 
set of geometric point cloud features, increase their distinctiveness 
by involving individual neighborhoods of optimal size and evaluate 
their relevance for classifying point cloud data acquired via mobile 
laser scanning. Since relevance can be quantified via different rele-
vance metrics, we present a general relevance metric taking into 
account different criteria and thus providing an objective ranking of 
features with respect to their suitability.

In the following, we first reflect related work in Section 2. Subse-
quently, we present our methodology in detail in Section 3. By 
showing experimental results derived for a benchmark MLS dataset, 
we demonstrate the performance of our approach in Section 4. The 
derived results are discussed in Section 5, and, finally, concluding 
remarks as well as suggestions for future work are provided in 
Section 6.

2 RELATED WORK

For 3D scene analysis in terms of assigning each 3D point a (se-
mantic) class label, two different strategies may be exploited. On the 
one hand, we may focus on the individual classification of each 3D 
point which only relies on the respective feature vector. For this 
purpose, standard classifiers such as Random Forests / Chehata 
et al. 2009/, Support Vector Machines / Mallet et al. 2011/ or Bayes-
ian Discriminant Classifiers / Khoshelham & Oude Elberink 2012/ are 
commonly used. On the other hand, we may focus on contextual 
classification which also involves a modeling of relationships among 
3D points in a local neighborhood and thus accounts for the fact that 
class labels of neighboring 3D points tend to be correlated. Respec-

tive classifiers are for instance represented by Associative Markov 
Networks / Munoz et al. 2009/, Non-Associative Markov Networks 
/ Shapovalov et al. 2010/ or Conditional Random Fields / Niemeyer 
et al. 2012/.

Since we mainly address feature relevance assessment, we focus 
on the individual classification of each 3D point and thus only on the 
respective feature vectors. In general, a variety of features may be 
involved which describe radiometric or geometric properties, or 
properties assessed during data acquisition (e. g. full-waveform 
features). Respective investigations categorizing a variety of features 
into different feature types have for instance been presented in 
/ Mallet et al. 2011/ or / Guo et al. 2014/. In order to provide a fun-
damental solution, we only exploit information which is shared by all 
available datasets, i. e. 3D geometry. Further features simply extend 
the feature vectors and do not change subsequent steps of the 
proposed methodology.

When using geometric features for describing the local 3D struc-
ture, these are typically derived at a single scale, where the scale 
parameter may be represented by (1) the radius of a spherical 
neighborhood, (2) the radius of a cylindrical neighborhood or (3) the 
number of points within the neighborhood. In order to obtain inform-
ative features, however, we have to consider that the choice of this 
scale parameter may strongly influence the feature representation, 
i. e. the feature vector, and thus also the classification results. Typ-
ically, the scale parameter is selected based on heuristic or empiric 
knowledge on the scene and defined to be identical for all 3D points 
of the considered point cloud. Consequently, this selection is spe-
cific for each dataset. In order to obtain a generic solution, the 
concepts of dimensionality-based scale selection / Demantké et al. 
2011/ and eigenentropy-based scale selection / Weinmann et al. 
2014/ have recently been proposed for obtaining individually opti-
mized 3D neighborhoods. These concepts not only avoid the use of 
heuristic or empiric knowledge on the scene, but they also result in 
a significant improvement in classification accuracy / Weinmann 
et al. 2014/. As alternative to selecting optimal neighborhoods for 
each individual 3D point, it has been proposed to calculate features 
at different scales / Brodu & Lague 2012/ or even based on different 
entities such as points and regions (e. g. / Xiong et al. 2011/ or / Xu 
et al. 2012/). This, however, results in feature vectors of significant-
ly higher dimension.

Furthermore, it has to be taken into account that, due to a lack of 
knowledge about scene and data, often as many features as possi-
ble are extracted and used for classification. However, some fea-
tures may be more relevant, whereas others may be less suitable or 
even irrelevant. This is of great importance since, in theory, many 
classifiers are considered to be insensitive to the given dimension-
ality, whereas redundant or irrelevant information has been proven 
to influence their performance in practice. Consequently, feature 
selection techniques have been proposed in order to gain predictive 
accuracy, improve computational efficiency with respect to both 
time and memory consumption, and retain meaningful features 
/ Guyon & Elisseeff 2003/. As a crucial step, such techniques rely on 
quantifying feature relevance. Accordingly, the basic idea consists 
of defining a ranking procedure and selecting a subset of the best-
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ranked features. In the context of lidar data processing, the ranking 
procedure often relies on the interaction with a classifier (e. g. 
/ Mallet et al. 2011/ or / Khoshelham & Oude Elberink 2012/) and, 
consequently, the derived feature subsets are only optimized with 
respect to a specific classifier. In order to obtain a more general 
solution, other approaches exploit a classifier-independent ranking 
procedure (e. g. / Weinmann et al. 2013/ or / Weinmann et al. 
2014/).

3 METHODOLOGY

As shown in Fig. 1, the proposed processing workflow consists of 
four components which are explained in detail in the following sub-
sections.

3.1 Neighborhood Selection

For deriving informative features for a given 3D point X0, we con-
sider its neighborhood consisting of the respective k closest neigh-
bors / Linsen & Prautzsch 2001/. Such a neighborhood definition 
accounts for varying point density by preserving flexibility with re-
spect to the absolute geometric size of the neighborhood. However, 
the selection of a suitable value for the scale parameter k  still re-
mains an important topic of recent research. Whereas selecting an 
identical value for k  across all 3D points provides a straightforward 
solution, it has to be taken into account that this involves heuristic 
or empiric knowledge on the scene and, consequently, the derived 
value is specific for each dataset. In contrast, considering individu-
al values for k  across all 3D points provides a generic solution, and 
it also accounts for the fact that k  rather depends on the local 3D 
structure as well as the local point density.

Among a variety of techniques for selecting the “optimal” scale pa-
rameter for each individual 3D point of a given point cloud, the concepts 
of dimensionality-based scale selection / Demantké et al. 2011/ and 
eigenentropy-based scale selection / Weinmann et al. 2014/ have 
proven to be suitable for mobile laser scanning data. Interestingly, a 
significant gain in classification accuracy (mainly resulting from a sig-
nificant gain in the recall values) can be observed when involving such 
a technique instead of a fixed scale parameter across all 3D points of 
a given point cloud / Weinmann et al. 2014/. Consequently, locally op-

timized neighborhoods increase the distinctiveness of local 3D shape 
features, i. e. the resulting features are more informative than those 
features based on a fixed scale parameter across all 3D points. 

Since respective investigations clearly reveal that  eigenentropy- 
based scale selection provides the best solution in comparison to 
various other neighborhood definitions / Weinmann et al. 2014/, we 
focus on this approach for defining appropriate neighborhoods. 
Consequently, for varying values of the scale parameter k, we exploit 
the 3D coordinates of a given point X 0 and its k closest neighbors 
in order to calculate the respective 3D covariance matrix which is 
commonly referred to as 3D structure tensor S:
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In this equation, X
_

 denotes the center of gravity. The three eigenva-
lues l1, l2 and l3 of the 3D structure tensor S with l1≥l2≥l3≥0 
are normalized by their sum ål which yields normalized eigenvalu-
es e 1, e 2 and e 3 with e i =l i /ål for iÎ{1,2,3}. Since the normalized 
eigenvalues sum up to 1, the measure El of eigenentropy is defined 
as the Shannon entropy:
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Minimizing the measure of eigenentropy across different values of k 
corresponds to minimizing the disorder of 3D points within the local 
3D neighborhood and, consequently, the optimal neighborhood size 
for the point X0 corresponds to the respective k with the minimal 
eigenentropy.

3.2 Feature Extraction

Once a 3D point X0 has been assigned its corresponding neighbor-
hood size, the next step consists of deriving respective features. 
Since many datasets only contain information in the form of spatial 
3D coordinates, we focus on the use of geometric features which 
are derived from the spatial arrangement of all points within the 
local neighborhood. More specifically, we follow the strategy of 
deriving a variety of both 3D and 2D features / Weinmann et al. 
2013/, but we increase their distinctiveness by taking into account 
the optimal neighborhood size of each individual 3D point as de-
scribed in Section 3.1.

Fig. 1 | The proposed 
processing workflow 
to get from measured 
3D point cloud data to 
semantic objects in the 
scene
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First, we focus on deriving 3D features. Whereas an analytical 
consideration of the eigenvalues l1, l2 and l3 of the 3D structure 
tensor S already allows a characterization of specific shape primi-
tives / Jutzi & Gross 2009/, these eigenvalues are typically used to 
define more general local 3D shape features. Accordingly, we exploit 
the normalized eigenvalues e 1, e 2 and e 3 in order to extract a set of 
eight eigenvalue-based features according to / West et al. 2004/ 
and / Mallet et al. 2011/. These features are referred to as linearity 
Ll, planarity Pl, scattering Sl, omnivariance Ol, anisotropy Al, 
eigenentropy El, sum ål of eigenvalues and change of curvature 
Cl. Further 3D features for characterizing the local neighborhood 
arise from basic geometric properties of the considered neighbor-
hood, e. g. absolute height H, radius rk – NN of the neighborhood, local 
point density D, verticality V which is derived from the vertical 
component of the normal vector, and maximum height difference 
∆Hk – NN as well as height variance sH, k – NN within the local neighbor-
hood. Thus, we have defined a total number of 14 geometric 3D 
features.

Subsequently, we take into account that urban environments 
contain numerous man-made objects which, in turn, typically pro-
vide almost perfectly vertical structures (e. g. building façades, 
walls, traffic signs or utility poles). In order to exploit such informa-
tion, the use of 2D features resulting from a 2D projection onto a 
horizontally oriented plane is advisable. Respective 2D features may 
describe basic geometric properties such as the radius rk – NN, 2D of 
the neighborhood after the projection onto the horizontal plane or 
the local point density D2D in 2D. Further 2D features arising from 
the 2D projection of all 3D points within the local neighborhood may 
be defined as the sum ål , 2D and the ratio Rl , 2D of the eigenvalues 
of the 2D covariance matrix which is also known as the 2D structure 
tensor. Finally, we project all 3D points onto the horizontally oriented 
plane and construct a 2D accumulation map with discrete, quadrat-
ic bins (here with a side length of 0.25 m as proposed in / Weinmann 
et al. 2013/). For each bin, respective characteristics are described 
by the number M of points as well as the maximum difference ∆H 
and standard deviation sH of height values within that bin. Thus, we 
have defined a total number of seven geometric 2D features.

Combining all 3D and 2D features as summarized in Tab. 1 thus 
yields a 21-dimensional feature vector for each 3D point, and since 
the features represent properties with different units, a normaliza-
tion across all feature vectors is introduced in order to map the 
values of each dimension onto the interval [0,1]. This yields normal-
ized feature vectors [X1, …, n ] = [X1, …, X21]T characterizing the 
local 3D structure at the respective 3D points.

3D features 2D features

Basic  
properties

Local shape 
features

Basic  
properties

Local shape 
features

Accumula-
tion map

H, rk – NN, D, 
V, DHk – NN, 
sH,k – NN

Ll, Pl, Sl, 
Ol, Al, El, 
ål, Cl

rk – NN, 2D, D2D ål, 2D, Rl, 2D M, DH, sH

Tab. 1 | Categorization of the 21 involved 3D and 2D features

3.3 Feature Selection

Although, in theory, many classifiers are considered to be insensitive 
to the given dimensionality, redundant or irrelevant information has 
been proven to influence their performance in practice. Consequent-
ly, techniques for finding compact and robust subsets of relevant 
and informative features have been investigated in order to gain 
predictive accuracy, improve computational efficiency with respect 
to both time and memory consumption, and retain meaningful fea-
tures / Guyon & Elisseeff 2003/. In this context, a feature is defined 
to be statistically relevant if its removal from a feature set will reduce 
the prediction power. In the following, we will quantify feature rele-
vance by assigning values in a specific interval.

Since we intend to select a generally versatile set of relevant 
features which is not optimized with respect to a specific classifier, 
we focus on a classifier-independent solution which, in turn, results 
in both simplicity and efficiency. Consequently, we apply a fil-
ter-based feature selection method. Such methods exploit a score 
function directly based on the training data. Note that the respective 
score function may address different intrinsic properties of the given 
training data such as distance, information, dependency or consist-
ency. Since considering a single property may not be sufficient, we 
apply a general relevance metric which is based on several score 
functions. More specifically, we involve Ns = 7 different score func-
tions which “evaluate” different intrinsic properties of the given 
training data / Weinmann et al. 2013/:

 � The Pearson correlation coefficient s Pearson = s 1 indicates to 
which degree a feature is correlated with the class labels.

 � The F-score or Fisher score s Fisher = s 2 represents the ratio be-
tween interclass and intraclass variance.

 � The measure of Information Gain s IG = s 3 reveals the depend-
ence between a feature and the class labels.

 � The Gini index s Gini = s 4 provides a statistical measure of disper-
sion and thus an inequality measure which quantifies a feature’s 
ability to distinguish between classes.

 � The measure s c = s 5 results from a c2-test which is used as a 
test of independence in order to assess whether a class label is 
independent of a particular feature.

 � The measure s t = s 6 results from applying a t-test on each 
feature and checking how effective it is for separating classes.

 � The ReliefF measure s ReliefF = s 7 indicates the contribution of a 
feature to the separation of samples from different classes.

For each score function, we derive a separate ranking of all features 
and denote the rank of a specific feature X i given the score function 
s j as r (X i | s j ). The rank r (X i | s j ) is thus an integer value in the in-
terval [1, N f], where N f denotes the number of involved features (in 
our case N f = 21). Smaller values reveal features with higher rele-
vance when considering the respective score function s j , whereas 
higher values reveal less suitable features. In order to obtain a 
general relevance metric R (X i ) taking into account several score 
functions, we combine the separate ranking results across all score 
functions s j by taking the mean rank r

_
(X i ) of each feature X i  ac-

cording to

( ) ( )
1

1
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N
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j
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and we introduce a mapping to the interval [0, 1] in order to interpret 
the result as relevance R (X i ) of the feature X i :
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( )

f

1
 

1
1 .i

i
r X

R X
N

-
-

-
=  (4)

3.4 Classification

For the sake of simplicity and applicability, we focus on individual 
point classification (i. e. the classification of a 3D point X0 by simply 
exploiting the respective feature vector), where a good trade-off 
between classification accuracy and computational effort can be 
achieved when using Random Forests / Breiman 2001/. Generally, 
Random Forests belong to the category of ensemble learning tech-
niques which are based on the idea of strategically generating a set 
of weak learners (represented by decision trees) and combining 
them via bagging in order to create a single strong learner. More 
specifically, bagging is based on the strategy of using bootstrapped 
replica of the training data, i. e. subsets of the complete training 
data which are randomly drawn with replacement, in order to train 
several decision trees. The random sampling results in randomly 
different weak learners and thus in diversity in terms of de-correlat-
ed hypotheses across the weak learners. Consequently, taking the 
respective majority vote over all hypotheses can be expected to 
result in improved generalization and robustness, and thus to pro-
vide a suitable classifier.

4 EXPERIMENTAL RESULTS

For demonstrating the performance of our methodology, we involve 
a standard benchmark dataset (Section 4.1), where ground truth 
labels are available for each 3D point. In our experiments (Sec-
tion 4.2), we intend to quantify feature relevance and define suitable 
feature subsets for interpreting 3D point cloud data. Consequently, 
when presenting the derived results (Section 4.3), we focus on the 
relevance of single features in order to select appropriate feature 
subsets and on the classification accuracy obtained when using the 
different feature sets for point cloud classification.

4.1 Dataset 

For demonstrating the performance of the 
proposed methodology, we involve the Oak-
land 3D Point Cloud Dataset / Munoz et al. 
2009/ which has been acquired in an urban 
environment with a mobile laser scanning 
system. This system allows to capture the 
local 3D geometry with side looking SICK 
LMS laser scanners used in push-broom 
mode. More specifically, the dataset con-
tains spatial 3D coordinates of about 
1.3 million 3D points as well as respective 
reference labels which have been obtained 
in a manually assisted way. The reference 

labels are assigned with respect to five semantic classes: wire, pole/
trunk, façade, ground and vegetation. A separation of the whole data-
set into training set and test set is available and, for both of them, the 
distribution of 3D points belonging to the different classes is very in-
homogeneous. Consequently, in order to avoid a bias in feature selec-
tion as well as a detrimental effect on classification, we introduce a 
class re-balancing by reducing the training set (which comprises about 
37 000 labeled 3D points) to a reduced training set encapsulating 
1 000 training examples per class. The test set contains 1.3 million 
labeled 3D points, where 70.5 % represent ground, 20.2 % represent 
vegetation, 8.4 % represent façade, 0.6 % represent pole/trunk, and 
0.3 % represent wire.

4.2 Experiments

By exploiting the concept of eigenentropy-based scale selection 
/ Weinmann et al. 2014/, we focus on automatically selecting an 
optimal scale parameter for each individual 3D point. Based on the 
derived individual neighborhoods of optimal size, the 21 defined 
low-level geometric 3D and 2D features are calculated. Subsequent-
ly, we consider the use of all features as well as the use of different 
feature subsets derived via the general relevance metric. For clas-
sification, we use a Random Forest classifier composed of N T = 100 
decision trees with a maximum tree depth of d max = 15. In each 
tree, a node is only split if it is reached by at least n min = 20 training 
samples, and the number of active variables (i. e. the number of 
features) to be used for the test in each tree node is set to the square 
root of the number of features (i. e. a=n dê ú

ê úë û where d  represents 
the number of involved features).

For evaluation, we consider (1) recall which represents a measure 
of completeness or quantity, (2) precision which represents a meas-
ure of exactness or quality, (3) overall accuracy (OA) which reveals 
the overall performance of the involved classifier on the test set, and 
(4) mean class recall (MCR) which reveals the capability of the in-
volved classifier to detect instances of different classes.

Fig. 2 | Ranking results obtained by applying the proposed general relevance metric. Relevant features 
are assigned a higher feature importance and hence a lower global rank.
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4.3 Results

For the conducted experiments, the proposed measure for quanti-
fying feature relevance and thus describing feature importance is 
visualized in Fig. 2. Thereby, the general relevance metric may result 
in a feature ranking which is quite different from a ranking involving 
neighborhoods with a fixed scale parameter across the whole data-
set / Weinmann et al. 2013/, since the concept of using individual 
neighborhoods of optimal size has proven to yield an increased 
distinctiveness of the extracted features / Weinmann et al. 2014/ 
which, in turn, influences the importance of these features.

Based on the extracted features, we conduct feature selection by 
selecting a feature subset which consists of the few best-ranked 
features (Fig. 2 ). More specifically, we compare the classification 
results obtained for feature subsets of the 5, 10 and 15 best-ranked 
features as well as the full feature set. The respective classification 
results are provided in Tab. 2  and, in order to ease comparison, the 
class-wise recall and precision values are visualized in Fig. 3. 
 Furthermore, the classified point clouds are depicted in Fig. 4.

Fig. 4 | Classified point clouds obtained for the feature sets comprising 5 features (top left), 10 features (top right), 15 features (bottom left) and all 21 features 
(bottom right) when using a standard color encoding (blue: wire, red: pole/trunk, gray: façade, brown: ground, green: vegetation). The noisy appearance results 
from individual point classification.

Fig. 3 | Recall and precision values (in %) for the different feature sets comprising 5 features (blue), 10 features (green), 15 features (yellow) and all 21 features (red)

# Features Recall Precision OA MCR

W P/T F G V W P/T F G V

5 72.69 72.08 63.28 98.61 79.49 10.32 23.41 75.15 96.35 95.03 91.55 77.23

10 78.91 75.89 67.02 98.69 79.82 8.01 18.90 87.15 97.24 96.31 92.03 80.07

15 85.40 73.30 67.87 98.34 82.38 7.81 32.24 84.19 97.24 95.53 92.38 81.46

21 85.56 79.54 67.88 98.36 78.24 8.30 23.47 82.72 96.77 96.10 91.59 81.91

Tab. 2 | Classification results (in %) obtained for the different feature sets comprising 5, 10, 15 and all 21 features (W: wire, P/T: pole/trunk, F: façade,  
G: ground, V: vegetation)
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5 DISCUSSION

From the derived results, it becomes clearly visible that some fea-
tures are more and others less relevant (Fig. 2 ). Thereby, the gap 
between highly relevant and less relevant features is quite consid-
erable. In comparison to / Weinmann et al. 2013/, we may state a 
slight change of the ranking which is due to the fact that we in-
creased the distinctiveness of the involved features by conducting 
eigenentropy-based scale selection. Consequently, the feature of 
eigenentropy El (which is used for deriving the optimal scale and 
thus the optimal neighborhood size) is assigned a significantly high-
er relevance. Whereas the feature of omnivariance Ol obtained the 
highest relevance and thus also reveals a significant gain in rele-
vance compared to / Weinmann et al. 2013/, the maximum height 
difference DHk – NN as well as the height variance sH, k – NN within the 
local neighborhood and the change of curvature Cl are again with-
in the 5 best-ranked features. Furthermore, the ratio Rl , 2D of the 
eigenvalues of the 2D covariance matrix and the maximum differ-
ence DH of height values within a bin are among the most relevant 
features which is in accordance with comparable investigations 
/ Weinmann et al. 2013/.

Whereas the proposed general relevance metric  directly allows to 
quantify feature relevance, the impact of feature relevance assess-
ment on 3D scene analysis becomes visible  after classification. The 
classification results provided in Tab. 2  and Fig. 3  reveal that the use 
of only the 5 best-ranked features (which corresponds to 23.8 % of 
the required memory for storing extracted features), the 10 best-
ranked features (47.6 %) and the 15 best-ranked features (71.4 %) 
still leads to reasonable  results, which are partially even  better than 
when using all features, while simultaneously reducing memory 
 consumption significantly. More speci fi cally, the overall accuracy 
(OA) is in the range of 91.5−92.4 % for all four  feature sets, and the 
respective mean class recall (MCR) values are in the range of 
77.2−81.9 %. For the class-wise considerations, only minor differ-
ences with respect to the recall and precision values may be stated 
when using the different feature sets. Consequently, the classified 
point clouds depicted in Fig. 4 only reveal minor differences. How-
ever, in comparison to /Weinmann et al. 2013/, the class-wise recall 
values and thus also the mean class recall (MCR) values are signif-
icantly higher due to the consideration of individual neighborhoods 
of optimal size. Furthermore, a significant increase in the precision 
values may be stated for the smaller classes of wire and pole/trunk.

Since the conducted feature selection is only based on the train-
ing set, all features only have to be calculated for the training set 
which contains 5 000 points. In contrast, for the test set containing 
about 1.3 million points, only those features considered as relevant 
have to be calculated. Thus, feature selection via the proposed 
general relevance metric can be considered as an interesting option 
for large-scale 3D scene analysis, where efficiency with respect to 
the computational burden in terms of processing time and memory 
consumption represents an important prerequisite. In order to get 
an impression on the computational effort for our experiments on a 
high-performance computer (Intel Core i7-3820M, 3.6 GHz, 64 GB 
RAM), we may have a look at the processing time required for each 
subtask. Considering the training set with 5 000 points, the required 
processing times are about 21 s for neighborhood selection, about 

4 s for feature extraction, about 25 s for feature selection and less 
than 1 s for training. For the test set containing 1.3 million points, 
the maximal processing times are reached when considering the full 
feature set for classification, and these processing times are given 
by about 758 s for neighborhood selection, about 2 793 s for feature 
extraction and about 6 s for classification. Consequently, feature 
extraction is the most time-consuming subtask and a significant 
improvement in efficiency for this component directly corresponds 
to a significant improvement of the whole processing workflow.

6 CONCLUSIONS

In this paper, we focused on feature relevance assessment in order 
to increase efficiency for the semantic interpretation of mobile laser 
scanning data. In this context, we proposed a methodology for 3D 
scene analysis where efficiency is increased by (1) involving individ-
ual neighborhoods of optimal size which, in turn, increases the 
distinctiveness of the involved features and (2) selecting a subset of 
the few best-ranked features according to a general relevance 
metric which, in turn, reduces the computational burden with re-
spect to both processing time and memory consumption. The de-
rived results clearly demonstrate the feasibility of the proposed 
methodology with respect to both criteria. The increased distinctive-
ness of the involved features becomes visible when considering the 
significantly beneficial impact of individually optimized neighbor-
hoods on the classification results and particularly on the mean 
class recall values. On the other hand, the derived results reveal that 
3D scene analysis may be conducted with only very few, but suitable 
features without significantly reducing the quality of the classifica-
tion results. For future work, we plan to address large-scale 3D 
scene analysis as well as a more detailed scene analysis up to object 
level. Furthermore, contextual learning approaches or spatial 
smoothing techniques could be applied in order to improve the 
classification results.
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