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1. Introduction

The title given by the organizers issues a 
challenge which we were happy to take 
up on one hand, but which is also hard 
to fulfill on the other hand. We therefore 
decided to limit our scope to two areas 
with broad recent interest, namely ap-
pearance based approaches for object 
extraction and classification as well as 
statistical and combinatorial modeling.

Appearance based approaches, i.e., 
approaches, where image information is 
directly used to model an object, have 
been around for a while. Yet, only with 
recent work they have become a main 
stream of research focusing on the ex-
traction of objects from images, e.g., 
(Agarwal et al. 2004, Leibe et al. 2004) 
and to some extent (Lowe 2004), but also 
on the classification of whole images. 
For the latter, Fei-Fei et al. (2004) have 
shown how to incrementally learn and 
discriminate 101 object classes. For all 
the above approaches, the basic idea is 
to combine the comparison of small pat-
ches of the image around salient points 
with the modeling of the spatial arran-
gement of these points. The big advan-
tage of doing so is, that the model can 
be learnt automatically from images or 
their parts tagged to be examples of a 
certain class.

Mumford (2000) has declared ‚The 
Dawning of the Age of Stochastici-
ty‘. While photogrammetry has always 
been doing statistics in conjunction with 
bundle-adjustment, one is usually happy 
to employ deterministic methods, whe-
re the result for given data is always the 
same. Non-deterministic combinatorial 
approaches such as random sample con-
sensus, or short RANSAC (Fischler and 
Bolles, 1981) as well as Markov Chain 
Monte Carlo (MCMC – Neal 1993) have 
abandoned determinism. While one 
might feel not at ease with obtaining a 

What Next: Autonomous 
Photogrammetric Image Understanding?
Zusammenfassung

Was nun: Autonomes Photogrametrisches 
Bildverstehen?
Der Beitrag gibt zwei Forschungslinien im 

Bildverstehen wieder, mit ihren Grenzen, 

die überwunden werden müssen. Dieses 

sind bildgetriebene Strategien zur Ob-

jektextraktion und –klassifikation sowie 

statistisches und kombinatorisches Mo-

dellieren. Einige Beispiele zur Fassaden-

interpretation und zur 3D-Rekonstruktion 

aus unkalibrierten Bilddaten demonstrie-

ren diese Vorgehensweise. Dabei werden 

insbesondere implizite Objektmodelle so-

wie das Random Sample Consensus (RAN-

SAC) und die Markoff-Ketten Monte Car-

lo-Methoden (MCMC) eingesetzt. Letztlich 

wird festgestellt, dass die Wünsche an die 

Methoden des Bildverstehens trotz der 

Fortschritte bei weitem noch nicht erfüllt 

werden können.

Abstract

We focus on two aspects of image under-

standing with broad recent interest and 

bright scientific perspective, but also limi-

tations which need to be overcome. These 

are particularly appearance based approa-

ches for object extraction and classificati-

on as well as statistical and combinatori-

al modeling. We illustrate the paper with 

examples of our work on building façade 

interpretation resting on developments 

in three-dimensional (3D) reconstruction 

from uncalibrated image sequences. Par-

ticularly, we introduce implicit shape mo-

dels as well as Random Sample Consensus 

(RANSAC) and Markov Chain Monte Carlo 

(MCMC). We finally note, that in spite of the 

large progress in image understanding in 

recent years, the gap to what people would 

like to have still seems to widen

Fig. 1: Bonn, backyard, first three and last image as well as 426 3-fold, 377 4-fold, 288 5-fold, 103 

6-fold, and 20 7-fold points (red) as well as camera positions (green pyramids), ‟0 = 0.3 pixels
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different, and sometimes even wrong re-
sult for every new run of an algorithm, 
it is extremely important to note, what 
one gains: the ability to solve problems, 
which could not be solved before, or 
at least not in a reasonable amount of 
time.

Before discussing appearance based 
approaches in Section 3 and statistical 
and combinatorial modeling in Section 
4, we give a short account of our recent 
developments in three-dimensional (3D) 
reconstruction from uncalibrated image-
ry to start our running example of buil-
ding façade interpretation. The paper 
ends up with conclusions.

2.  3D Reconstruction 

With Hartley and Zisserman (2003), the 
second edition of a book initially pub-
lished in 2000, 3D reconstruction based 
on projective geometry has become text-
book knowledge. It makes it possible 
to generate a Euclidean 3D model from 
nothing, but perspective images alone. 
Euclidean 3D model means in this case 
a model like in photogrammetric rela-
tive orientation: Only location, i.e., x-, 
y-, and z-coordinates of the points, the 
three parameters for orientation, and 
the scale are unknown, but right angles 
are projected to right angles, and ratios 
of lengths as well as general angles in 
space are preserved. 

The basic ingredients for projective 
geometry based 3D reconstruction are 
the fundamental matrix and the trifo-
cal tensor, linking linearly two or three, 
respectively, perspective images. Com-
bined with RANSAC, one can obtain a 
correct solution even for cases where 
the image matching results into less than 
20% correct matches. The basic idea of 
RANSAC is to compute a large num-
ber of solutions from randomly selected 
points (to keep the complexity down, the 
minimum number of points necessary 
for a solution is used) and decide about 
the best one by measuring the support 
a solution receives from the remaining 
points. For the fundamental matrix, the 
support is, e.g., nothing else but the 
number of points which are closer than 
a given threshold, e.g., half a pixel, to 
their corresponding epipolar lines which 
can be computed by matrix – vector 
multiplication from the fundamental 
matrix. While one usually always gets 

another result from RANSAC for every 
run, it still makes it possible to solve a 
problem, for which standard robust esti-
mation is infeasible.

The triplets are linked into projec-
tive sequences and blocks. To obtain a 
metric solution, auto-calibration is nee-
ded. Here, we employ the work of Pol-
lefeys et al. (2004) based on the dual 
image of the absolute conic. In Figure 1, 
four of eight images from a backyard in 
Bonn taken with a consumer Sony P 100 
camera with 5 Megapixels and a Zeiss 
objective as well as the 3D model gene-
rated fully automatically are shown. The 
right angles have been reconstructed 
very well, there are many n-fold points 
(with n ≥ 3) and the backprojection error 
is 0.3 pixels. By comparison with other 
image sequences we found that, given a 
suitable 3D geometry, the camera para-
meters can be estimated in the range of 
a few percent. Noting, that automatic 3D 
reconstruction from scratch starts to be-
come operational, commission III of the 
International Society for Photogrammet-
ry and Remote 

Sensing (ISPRS) has recently set up 
a working group with one of the impor-
tant goals being to demonstrate the po-
tential and the limits of 3D reconstruc-
tion by means of an international test in 
conjunction with the computer vision 
community.

We use the result of the above 3D 
reconstruction to generate hypotheses 
for the objects we are interested in, na-
mely building façades (cf. also Mayer 
and Reznik 2005). As the vertical direc-
tion plays a major role for façades, we 
first determine it from vertical lines ty-
pically found on façades. For the com-
putation of the vertical vanishing point 
where these lines meet as well as to 
derive the façade planes from the given 
3D points, we employ RANSAC. For 
the façade planes this means, that we 
choose three points randomly, construct 
a plane from them, and check how 
many of the given 3D points belong to 
this plane. We finally take those planes 
with maximum support, but with only a 
tiny overlap (this happens at the line of 
intersection). 

The images are then projected onto 
the planes and by means of least squares 
matching the parameters of the planes 
are improved while at the same time 
areas not on the plane are determined 
by robust estimation. The result for the 
running example for the rest of the paper 
from the Hradschin in Prague, Czechia, 
is given in Figure 2. For the two pla-
nes there have been about 270 and 250 
supporting points, respectively. Some of 
the parts not on the façades have been 
found, but if there is not enough local 
contrast, robust estimation fails to 

Fig. 2: 3D points (red), cameras (green pyramids) and façade planes including holes of areas not 

on the façade planes generated from four images of Prague‘s Hradschin
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detect particularly the windows behind 
the façades.

3.  APPEARANCE BASED OBJECT 
EXTRACTION

The ultimate goal of image understan-
ding is to fully automatically determine, 
what can be seen where. Basically, this 
rests on huge amounts of knowledge, 
with Popper (1999) arguing, that most 
of our knowledge being ‚inborn‘ know-
ledge. This has become clear also empi-
rically by the difficulty or even impossi-
bility to comprehensively model the real 
3D world manually from scratch.

Appearance based object extraction 
is a way to tackle two aspects of the 
above problems: Parts of the model are 
learned and the complexity of the 3D 
model is avoided by solving the problem 
in image space. The basic idea of recent 
approaches on appearance based object 
extraction is to describe an object by 
image patches around salient points and 
their relations in the image. Which pat-
ches and which relations characterize an 
object are learned from training data.

Particularly, Agarwal et al. (2004) 
employ (normalized) cross correlation 
(CC) to compare image patches around 
Förstner points (Förstner and Gülch 
1987) to find cars seen from the side. The 
image patches of the training images are 
clustered (e.g., many wheels look similar) 
and for the clusters the relative locations 
in terms of direction and distance to other 
patches are learned. The recognition of a 
car is mapped to the problem of deciding 
if a part of an image contains a car. For a 
particular image part, Förstner points are 
extracted, the patches around the points 
are compared to the clusters via CC, for 
the similar patches the relations are com-
puted and, based on them, it is decided 
how likely it is, that a car is present or 
not. To locate a car in an image, it is split 
into parts with approximately the size of 
the car, for all parts the likelihood is de-
termined and finally a car is deemed to be 
detected at all positions with a likelihood 
higher than its surroundings and above a 
given threshold. To be able to deal with 
images of different resolutions, an image 
pyramid is used and a hypothesis for a 

car has to be a maximum in the spatial as 
well as the scale domain. 

An approach based on an impli-
cit shape model with better results and 
which is also conceptually superior than 
the one above was proposed by Leibe et 
al. (2004). Again, CC is used to build 
clusters, but scale-invariant features 
are used (Leibe and Schiele 2004) and 
the hypotheses for objects are found via 
generalized Hough transform (Ballard 
1981). Additionally, the object is seg-
mented by back projecting the learnt 
image patches into the image. The ap-
proach obtains for the task to find a lar-
ge number of cars an equal error rate of 
more than 97% for the fixed-scale and 
91% for the scale-invariant solution.

The simple core of the implicit sha-
pe model with the points, the CC, and 
the generalized Hough transform has led 
us to the idea, to use it for façade inter-
pretation, particularly, window detec-
tion. Here, we have the big advantage, 
that the viewpoint is relatively limited 
as we can project the façades on their 
corresponding planes and rotate them to 

Fig. 3: Eleven of 72 image parts used for learning with Förstner points (red) and manually determined centers of windows (yellow)

Fig. 4: Façade (left) and accumulated evidence for window centers (right), both with Förstner points (red)
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the vertical direction. Additionally, it is 
helpful to normalize the pixel size on the 
façades. Figure 3 shows eleven out of 72 
image parts used for learning. The red 
points were detected with the Förstner 
operator with a fixed set of parameters 
used also for the actual object detection. 
The yellow points in the centers of the 
windows have been marked manually. 

To detect windows, Förstner points 
are extracted (cf. Figure 4, left). Then, 
the patches around these points are com-
pared by means of CC with all image 
patches learnt in training. If CC is above 
an empirically determined threshold of 
0.8, the known difference vector for the 
learnt patch to the center point marked 
in yellow in Figure 3 is employed to in-
crement hypotheses for window centers 
in an initially empty accumulator array 
(cf. Figure 4, right). Figure 4, right, 
shows, that there is a larger number of 
these hypotheses inside the windows 
than outside. This is due to the facts, 
that only patches which look similar to 
training patches trigger hypotheses and, 
that, while some patches, as, e.g., the up-
per right corners of an upper and a lower 
part of a window, might give ambiguous 
evidence, usually only evidence for cor-
rect hypotheses clusters. To actually end 
up with one hypothesis per window, we 
employ the fact, that windows have a 
certain size. Therefore, the accumulator 
array is integrated, i.e., blurred with a 
Gaussian with an appropriate σ, and the 
maxima beyond an empirically determi-
ned threshold are taken as hypotheses for 

centers of windows (cf. Figure 5). Please 
note, that none of the windows in Figure 
4 has been used for training.

While the solution for our problem 
looks very promising (cf. also further re-
sults given in the next Section), there are 
limitations for this approach for more 
general problems such as building de-
tection. Particularly, the 3D geometry is 
modeled only implicitly and the shape is 
restricted to the learnt examples. For this 
an idea might be to learn regular parts 
of the more complex generic objects. To 
improve the modeling of the image func-
tion also in terms of its invariance con-
cerning viewing angle and scale, Lowe‘s 
(2004) SIFT operator should be a high 
quality alternative to CC.

4.  STATISTICAL AND 
COMBINATORIAL MODELING

We made our first experiences with 

non-deterministic modeling when using 
RANSAC (cf. Section 2). Defining the 
output of an algorithm also in terms of 
the probability for a correct solution 
feels unsafe in the beginning. Yet, if one 
can solve problems efficiently, where 
the other option is to wait unacceptably 
long, one starts to accept this change of 
attitude and considers it as a means for 
different kinds of problems.

A very recent and advanced examp-
le is (Tu et al. 2005), where segmenta-
tion of image regions is linked with the 
recognition of semantic objects such as 
faces or text. The basic idea is to deter-
mine probabilities for different segmen-
tations and objects and their maxima by 
means of statistical sampling employing 
MCMC. A very important development 
for this, which has made MCMC feasib-
le for a much larger class of problems, 
because the number of parameters of the 
problem is allowed to change dynami-
cally, is the extension by means of re-
versible jumps (RJ) to RJMCMC (Green 
1995).

The latter is employed in work 
closer to the realm of photogrammetry 
by Stoica et al. (2004) and particularly 
Dick et al. (2004). Both show an extre-
mely important feature of MCMC based 
modeling, namely the simulation of the 
given knowledge by sampling into the 
prior distribution. E.g., in (Stoica et 
al. 2004) it is shown how realistically 
looking road networks can be simulated 
by starting from one given segment and 
priors for lengths and spatial relations 
such as relative angles. Similarly, Dick 
et al. (2004) generate a variety of buil-
dings from given simple buildings and 
distributions for window, door, etc., 

Fig. 5: Accumulated evidence for window centers integrated with a 

Gaussian filter and their maxima (red crosses)

Fig. 6: Abstraction 

hierarchy consisting 

of the original ortho 

image, the ortho 

image abstracted 

via Dual-Rank filter, 

as well as the final 

MCMC-model with 

added noise
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sizes and the location of windows, etc., 
on façades. The ability to simulate is a 
big advantage compared to modeling 
tools such as semantic nets, where the 
correctness of the model can only be 
guessed from results of the extraction 
from given data.

To actually extract objects, the prior 
knowledge is linked to the likelihood, 
that an object is actually present in the 
data. Often the latter is generated by 
comparing a visualization of the hypo-
thesized model with the original data. 
The posterior distribution is obtained as 
the usual multiplicative combination of 
prior and likelihood.

To extract windows on façades, we 
start with the hypotheses for window 
centers generated by the appearance 
based approach presented above and hy-
pothesize windows in the form of black 
squares with a relatively small size on 
a gray background. For a more correct 
modeling of the actual image including 
disturbances, noise with ± 10 gray va-
lues is added. As real windows consist of 
finer scale details, abstraction is used in 
the form of gray-scale opening-closing 
scale-space filtering realized by the Dual 
Rank filter described in (Eckstein and 
Munkelt, 1994). The original ortho-pro-
jected façade image, the abstracted ortho 
image, as well as the simulated image 
are given in Figure 6. 

For the comparison of the simula-
ted and the abstracted ortho image again 
the CC is used. Here the result is inter-
preted as the likelihood of a hypotheses 
for being a window. In the simplest case 
we just use priors for the width and the 
height of windows and change the width, 
height, as well as the location, i.e., the 
x- and the y-position randomly (Monte 
Carlo). That the values for an iteration 

depend only on the directly preceding 
iteration is the Markov property of the 
Markov Chain. As we know from the 
above appearance based approach more 
about the location than about the width 
and the height, we change the latter more 
often. The final goal is the solution with 
the highest posterior. 

To avoid to get stuck in local maxi-
ma, we use simulated annealing. Here this 
means, that according to a (temperature) 
parameter, which is high at the beginning, 
also solutions are accepted which are 
worse than the solutions obtained before. 
With each iteration the temperature and, 
therefore, the probability to accept a so-
lution worse than the one obtained before 
is reduced leading finally ideally to the 
global, but in realistic cases to a suitable 
maximum. The result for this is shown for 
the running example in Figure 7. All win-
dows, marked in green have been found 
(hypotheses given as white squares) and 
have been delineated rather well. Further 
results are given in Figure 8. Again, all 
windows have been found, though one 
can see some deficits of the outline espe-
cially closer to the margin of the image.

  While MCMC only allows to mo-
del objects with a given fixed number 
of parameters, by means of RJMCMC 
it becomes possible to switch between 
different types of models with different 
numbers of parameters. Here, these are, 
e.g., modeling individual windows, or 
rows, columns, or even grids of win-
dows. In Figure 9 preliminary results for 
the determination of rows of windows 
via RJMCMC are shown. Though the 

regularity induced by the row helps in 
the determination of the location of win-
dows, and potentially makes it possible 
to detect also partially hidden windows, 
it can also lead to new problems such as 
interpreting the window above the door 
in the lower center of Figure 9 together 
with parts of the door as evidence for a 
regular window. Here, the evaluation of 
the likelihood has to be improved and 
also the prior probability of doors on the 
ground floor should be helpful.

5.  CONCLUSIONS

We have tried to take up the challenge 
issued by the organizers of the photo-
grammetric week by focusing on two 
topics of image understanding with 
broad recent interest. These are parti-
cularly appearance based and statistical 
approaches for which a large potenti-
al is seen to model objects as one can 
soundly combine prior knowledge with 
image information. Additionally, recent 
progress in automatic 3D reconstruction 
from uncalibrated imagery has been de-
monstrated.

In spite of the large scientific pro-
gress we have seen over the last fifteen 
years, still every new solution opens up 
more than one question. This is scienti-
fically extremely interesting, but widens 
the gap between what people would like 
to have and what can actually be achie-
ved.
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