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Aus der automatischen Aufzeichnung von Daten ergibt sich die Notwendigkeit der Datenkompression. Eine
allgemeine Methode folgt aus der Multi-Skalen-Repräsentation von Signalen. B-Spline-Flächen, auch als
Freiformflächen bezeichnet, werden für die Darstellung angewendet. Eine effiziente Methode, um B-Spline-
Flächen an Messungen anzupassen, erhält man mit der sogenannten Lofting-Methode. Die Multi-Skalen-
Repräsentation von Punkten auf der angepassten Fläche mit einer Dichte, die höher ist als die der
Messungen, wird abgeleitet. Kleine Wavelet-Koeffizienten dieser Darstellung können für eine Datenkom-
pression eliminiert werden. Als Schwellen zur Vernachlässigung der Wavelet-Koeffizienten dienen ihre
Konfidenzgrenzen, die mit Monte- Carlo-Verfahren berechnet werden. Falls Monte-Carlo-Methoden nicht
praktikabel sind, werden die Schwellen durch die maximalen Absolutwerte der Wavelet-Koeffizienten zu-
sammen mit der Standardabweichung, mit der die B-Spline-Fläche an die gemessenen Höhen angepasst
wird, und mit den mittleren quadratischen Differenzen der Höhen der Flächen bestimmt, die mit und ohne
Datenkompression berechnet werden. Diese Methoden werden für ein Beispiel erläutert, bei dem eine
B-Spline-Fläche an die Koordinaten, gemessen mit einem Laserscanner, von Punkten auf einem Beton-
träger unter einer Kellerdecke angepasst wird.
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With the advent of automatic collection of data, the need of data compression arises. A general method is
obtained by the multi-scale representation of signals. B-spline surfaces, also called free-form surfaces, are
applied for the representation. An efficient method for fitting B-spline surfaces to measurements is given by
the lofting method. The multi-scale representation of points on the fitted surface with a density higher than
that of the measurements is derived. Small wavelet coefficients of this representation can be neglected to
achieve data compression. Confidence intervals for the wavelet coefficients computed by Monte Carlo
methods serve as thresholds for neglecting the wavelet coefficients. In case Monte Carlo simulations
are not feasible, thresholds are established by the maximum absolute values of the wavelet coefficients
together with the standard deviation, with which the B-spline surface is fitted to the measured heights, and
with the root mean square difference between the heights of the surface computed with and without data
compression. These methods are demonstrated by fitting a B-spline surface to the coordinates of points on
a concrete beam under a ceiling measured by a laser scanner.
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1 INTRODUCTION

Data compression is a task which is routinely applied for digital sig-
nals. The best known example is the special compression for digital
images stored in the jpg-format. A general method for data compres-
sion is available by the multi-scale representation of signals. At a
lower level of resolution, a signal is computed by a low-pass filter.
The difference of information in comparison to the original represen-
tation of the signal is obtained by the so-called detail signals which
result from a wavelet representation. The detail signals are computed
by band-pass filters with frequency bands resulting from the reso-
lution level. The low-pass filtered version of the signal plus the detail
signals gives the original signal. Some of the wavelet coefficients
determining the detail signals will be small so that they can be ne-
glected, thus achieving data compression.
The multi-scale representation of signals goes back to Mallat (1989).
Schmidt (2001) presents geodetic applications, for instance, the mul-
ti-scale representation using Daubechies wavelet functions for digital
image analysis and data compression. Quak and Weyrich (1994)
based on Chui and Quak (1992) introduce spline wavelets. Stollnitz
et al. (1995a,b) use endpoint-interpolating B-spline wavelets which
are also applied here. They propose the tensor product for a the multi-
scale representation of surfaces.
The tensor product of B-splines in two dimensions gives the well
known free-form surfaces with many applications. For instance in
reverse engineering, a B-spline surface is fitted to the measured co-
ordinates of a manufactured object to obtain an analytical model
which is modified by computer aided design, cf. Yang and Qian
(2007). To correct for offsets of reflectors, free-form surfaces are
applied by Hennes (2009). Three-dimensional models with high re-
solution, for instance of buildings, depicted by digital images are de-
rived by free-form surfaces (Koch, 2011b). Fitting these surfaces to
objects can be accomplished with an uncertainty which does not sur-
pass the uncertainty of the measurements as was shown by Monte
Carlo simulations (Koch, 2009c). By generalizing the tensor product
of B-splines to three dimensions, surfaces of objects, which change
with time and are measured, for instance, in a deformation analysis,
can be represented by B-spline surfaces (Koch, 2010a). To model the
electron density of the ionosphere, Schmidt et al. (2008) defined a
four-dimensional B-spline surface. A numerical example of a four-
dimensional surface is given by Koch and Schmidt (2011).
If the coordinates which are measured for representing an object are
arranged in regular grids, the control points of the B-spline surface
can be estimated by the so-called lofting method. It is much faster
than the simultaneous estimation of the control points and should be
preferred in case of many control points. The equivalence of the es-
timation is proved for two-dimensional B-spline surfaces by Koch
(2009a) and holds also for n-dimensional ones (Koch and Schmidt,
2011).
Fitting B-spline surfaces to objects with discontinuities like edges
needs a high density of the measurements. Outside the discontinu-
ities, the high density is not necessary but it is fixed for an automatic
measuring process like laser scanning. Examples are facades of
buildings where a high density of the measurements is mandatory
because of the windows and doors. Large parts of the facade are
plane where the high density is not needed. Data compression is
therefore recommended (Koch, 2011b).

An overview of the n-dimensional multi-scale representation of sig-
nals by B-spline surfaces is presented by Zeilhofer (2008) and
Schmidt (2010). Koch (2011a) gives the details of deriving the de-
composition equations and the n-dimensional multi-scale represen-
tation of signals with higher density than that of the measurements.
To achieve data compression, small wavelet coefficients determining
the detail signals are neglected. Schmidt (2007) and Koch (2011a,b)
determine the maximum absolute value of the wavelet coefficients for
each level of resolution and neglect the coefficients with absolute
values smaller than a chosen percentage of the maximum value.
This method and three additional ones are applied here and checked
by computing the root mean square (rms) difference between the
signals computed with and without data compression. The rms dif-
ference must not surpass the standard deviation with which the B-
spline surface is fitted to the measurements. Otherwise, the data
compression gives distorted results. However the question arises,
which ratio between the standard deviation of the fit and the rms
difference of a certain level of resolution should be selected. This
is investigated here for a two-dimensional multi-scale representation.
To obtain an objective method for neglecting wavelet coefficients,
their confidence intervals are computed by Monte Carlo simulations
and the coefficients to be neglected are determined by hypothesis
tests.
The paper is organized as follows: Section 2 presents the two-dimen-
sional multi-scale representation of signals. Section 3 covers the
Monte Carlo method and the hypothesis tests of the wavelet coeffi-
cients. Section 4 discusses thresholds for the data compression
which are applied to an example. The heights with respect to a plane
of a concrete beam are measured by the laser scanner Leica HDS
3000 with a high density because of the edges.

2 TWO-DIMENSIONAL MULTI-SCALE
REPRESENTATION OF SIGNALS

The tensor product of B-splines can be expressed by the Kronecker
product which is well suited for deriving the n-dimensional multi-
scale representation of signals. The Kronecker product does not
lead to efficient formulas for computing if its definition is used. How-
ever for the two-dimensional case, the Kronecker product can be
replaced by a matrix product (Koch, 2011b), which may be efficiently
computed. In the following for easy reference, the formulas for the
two-dimensional multi-scale representation are collected.
A two-dimensional B-spline surface depends on two parameters
which will be called n1; n2. It is expressed by the tensor product
of the two B-spline basis functions Ni1q1ðn1Þ; Ni2q2ðn2Þ of degrees
q1, q2 with, cf. Piegl and Tiller (1997, p. 34), Koch (2009b),

sðn1; n2Þ ¼
XI1�1

i1¼0

XI2�1

i2¼0

Ni1q1ðn1ÞNi2q2ðn2Þp i1 i2 ð1Þ

and

sðn1; n2Þ ¼
x1ðn1Þ
x2ðn2Þ

H1ðn1; n2Þ
H2ðn1; n2Þ

��������

��������
ð2Þ
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where the 4 � 1 vector sðn1; n2Þ denotes a point on the B-spline
surface with the two-dimensional rectangular or curvilinear coordi-
nates x1 and x2 with x1 depending only on n1 and x2 only on n2.
It is therefore assumed that the measurements for determining
the B-spline surface are arranged in grids defined by the x- and
y-coordinates. The third and the fourth coordinates H1 and H2 are
the two quantities to be represented by the surface. In the following
example, H1 will be the height of the surface with respect to the
x1; x2-plane and H2 the intensity of the reflected laser beam of a
point measured by a laser scanner. The points

p i1 i2 ¼ jx1i1 ; x2i2 ; H1i1 i2 ; H2i1 i2 jT with

i1 2 f0; . . . ; I1 � 1g; i2 2 f0; . . . ; I2 � 1g ð3Þ

are the unknown control points, which the B-spline surface approxi-
mately follows. The B-spline basis functions NiqðnÞ are computed by
the recursion formula of Cox (1972) and de Boor (1972). So-called
knots are introduced as a sequence of nondecreasing real numbers in
the interval [0,1]. The first and the last knot have multiplicity of the
degrees q1; q2 to obtain the property of endpoint-interpolation. The
numbers I1; I2 of unknown control points depend on the numbers of
knots for n1; n2 and on q1; q2 in (1).
The B-spline surface is fitted to the measured coordinates of points.
Let the rectangular or curvilinear coordinates x1; x2 together with H1
and H2 of e1 � e2 points sðn1a1 ; n2a2Þ be given in a grid, where n1a1
with a1 2 f1; . . . ; e1g and n2a2 with a2 2 f1; . . . ; e2g denote the
location parameters which shall be known. Eq. (1) then leads to a
linear relation between the unknown control points p i1 i2 and the given
points sðn1a1n2a2Þ. The observation equations for estimating p i1 i2 in a
linear model are therefore given by

XI1�1

i1¼0

XI2�1

i2¼0

Ni1q1ðn1a1ÞNi2q2ðn2a2Þp i1 i2

¼ sðn1a1 ; n2a2Þ þ eðn1a1 ; n2a2Þ;

a1 2 f1; . . . ; e1g; a2 2 f1; . . . ; e2g ð4Þ

where eðn1a1 ; n2a2Þ denotes the vector of errors of sðn1a1 ; n2a2Þ.
There are e1 � e2 linear equations for determining I1 � I2 unknown
control points so that e1 � e2 � I1 � I2 must hold.
Since the measured points are given in a grid, the lofting method by
cross-sectional curve fits is applied. It is more efficient than the si-
multaneous estimation and gives identical results (Koch, 2009a). Eq.
(4) is therefore rewritten by

XI1�1

i1¼0

Ni1q1ðn1a1Þb i1a2 ¼ sðn1a1 ; n2a2Þ þ eðn1a1 ; n2a2Þ ð5Þ

with

XI2�1

i2¼0

Ni2q2ðn2a2Þp i1 i2 ¼ b i1a2 ð6Þ

where b i1a2 denotes the 4�1 vectors of control points of the isopara-
metric curves sðn1; n2 ¼ constÞ and p i1 i2 the control points of the
isoparametric curves sðn1 ¼ const; n2Þ.
The control points b i1a2 are estimated first by means of the obser-
vation equations (5). They read in matrix notation

Nðn1ÞB ¼ S þ E ð7Þ

where the e1 � I1 matrix Nðn1Þ of the B-spline basis functions is
defined by

Nðn1Þ ¼
N0q1ðn11Þ . . . NI1�1;q1ðn11Þ
. . . . . . . . .. . . . . .. . . . . . . . . . . . . . .
N0q1ðn1e1Þ . . . NI1�1;q1ðn1e1Þ

������

������ ð8Þ

and the I1 � e2 matrix B of control points by

B ¼
b01 . . . b0e2

. . . . . . . . .. . . . . . . . . . . .
b I1�1;1 . . . b I1�1;e2

������

������ ð9Þ

so that the scalar elements of Nðn1Þ are multiplied by the vector
elements of B . With

sðn1a1 ; n2a2Þ ¼ sa1a2 ð10Þ

the e1 � e2 matrix S of given points is introduced by

S ¼
s11 . . . s1e2
. . . :. . . . . . . . . : :
se11 . . . se1e2

������

������: ð11Þ

The e1 � e2 matrix E of errors is obtained with replacing s by e in
(10) and (11).
Eq. (7) represents the observation equations of a multivariate linear
model by which the control points b i1a2 of the isoparametric curves
sðn1, n2 ¼ constÞ are estimated e2 times for each value of n2. The
estimate B̂B of B follows by, cf. Koch (1999, p. 241),

B̂B ¼ ðNðn1ÞTNðn1ÞÞ�1Nðn1ÞT S : ð12Þ

The matrix Nðn1Þ has full column rank so that the matrix
Nðn1ÞTNðn1Þ of normal equations is regular if the points are given
on grids.
In the next step, (6) is used as observation equations for estimating
the unknown control points p i1 i2 of the isoparametric curves
sðn1 ¼ const; n2Þ. Applying matrix notation we find

Nðn2ÞD ¼ B̂B T þ E B̂BT ð13Þ

where the e2 � I2 matrix Nðn2Þ of the B-spline basis functions is
defined as in (8). The I1 � I2 matrix D of unknown control points
is given by

D ¼
p00 . . . p0;I2�1

. . . . . .. . . . . . . . . . . . . . .
p I1�1;0 . . . p I1�1;I2�1

������

������ ð14Þ

and E B̂BT is the matrix of errors of B̂B T .
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Eq. (13) represents the observation equations of a multivariate linear
model by which the control points p i1 i2 of the isoparametric curves
sðn1 ¼ const; n2Þ are estimated I1 times for each value of n1. The
estimate D̂D T of D T follows by

D̂D T ¼ ðNðn2ÞTNðn2ÞÞ�1Nðn2ÞT B̂B T : ð15Þ

The matrix ÊE of residuals is obtained from (13) with the estimate D̂D by

^̂BB̂BB
T ¼ Nðn2ÞD̂D ð16Þ

and from (7) by

ÊE ¼ Nðn1Þ^̂BB̂BB � S : ð17Þ

The estimate r̂2r2 of the 4� 1 vector r2 of the variance factors for
each of the four coordinates x1; x2; H1; H2 follows from, cf. Koch
(2007, p. 96),

r2 ¼ vecÊE T vecÊE=ðe1e2 � I1 I2Þ : (18)

By summing the squares of the residuals of these coordinates and
dividing by the degrees of freedom, their variances are obtained
(Koch, 2010a).
Surfaces with discontinuities such as edges have to be scanned by a
dense grid of points. In order to preserve the high resolution of the
measurements when extracting geometrical information from the B-
spline surface, points on the surface are computed with a density
higher than that of the measurements. Let the points on the fitted
surface have the given location parameters n1w1

; n2w2
with

w1 2 f1; . . . ; v1g;w2 2 f1; . . . ; v2g. They are collected in the
v1 � v2 matrix Sw which is defined by replacing e1; e2 in (11) by
v1; v2. The matrix Sw is computed with (13) and (7) by

^̂BB̂BB
T

w ¼ Nðn2w2
ÞD̂D ð19Þ

and

Sw ¼ Nðn1w1
Þ^̂BB̂BBw ð20Þ

where the v1 � I1 matrix Nðn1w1
Þ and the v2 � I2 matrix Nðn2w2

Þ of
B-spline basis functions are obtained correspondingly to (8).
The multi-scale representation of signals starts with a certain level
j 2 N0 of resolution and introduces scaling functions for which B-
splines are used here. Thus, the scaling functions Uj1 i1q1ðn1Þ and
Uj2 i2q2ðn2Þ of level j1 and j2 for n1 and n2 are identified with the B-
spline basis functions in (1) which are now defined for level j1 and j2

Uj1 i1q1ðn1Þ ¼ Nj1 i1q1ðn1Þ;Uj2 i2q2ðn2Þ ¼ Nj2 i2q2ðn2Þ : ð21Þ

The number Ij1 and Ij2 of scaling functions are equal to the number of
control points for the parameters n1 and n2 in (1). Ij1 and Ij2 are de-
termined by

Ij1 ¼ 2j1 þ q1; Ij2 ¼ 2j2 þ q2 ð22Þ

and the level j of resolution by

j ¼ maxðj1; j2Þ : ð23Þ

The Ij1 � 1 vector Uj1ðn1Þ collects the scaling functions

Uj1ðn1Þ ¼ jUj10q1ðn1Þ; . . . ;Uj1;Ij1�1;q1ðn1ÞjT ð24Þ

and accordingly the Ij2 � 1 vector Uj2ðn2Þ. The signal s j ðn1; n2Þ is
obtained from (1) with the Ij1 � Ij2 matrix D j ¼ D , now referred to
level j, of control points from (14), which are called scaling coeffi-
cients,

s j ðn1; n2Þ ¼ UT
j1
ðn1ÞD jUj2ðn2Þ : ð25Þ

The signals of the multi-scale representation are therefore points on
the B-spline surface.
We introduce for level j1 � 1 the wavelet functionW j1�1;l ;q1ðn1Þ with
l 2 f0; 1; . . . ; Lj1�1 � 1g, Lj1�1 ¼ Ij1 � Ij1�1 and the Lj1�1 � 1
vector W j1�1ðn1Þ of wavelet functions

W j1�1ðn1Þ ¼ jW j1�1;0;q1ðn1Þ; . . . ;W j1�1;Lj1�1�1;q1ðn1ÞjT ð26Þ

and accordingly the Lj2�1 � 1 vector W j2�1ðn2Þ of wavelet func-
tions. The vector Uj1ðn1Þ from (24) is transformed to the
Ij1�1 � 1 vector Uj1�1ðn1Þ of the lower level j1 � 1 by the
Ij1 � Ij1�1 matrix P j1 of constants

UT
j1�1ðn1Þ ¼ UT

j1
ðn1ÞP j1 : ð27Þ

The Lj1�1 � 1 vectorW j1�1ðn1Þ of wavelet functions is computed by
the Ij1 � Lj1�1matrix Q j1 of constants

W T
j1�1ðn1Þ ¼ UT

j1
ðn1ÞQ j1 : ð28Þ

Correspondingly, the Ij2�1 � 1 vector Uj2�1ðn2Þ and the Lj2�1 � 1
vector W j2�1ðn2Þ are transformed. Eqs. (27) and (28), which are
called two-scale relations, are also applicable for transformations
to lower levels than j1 � 1 and j2 � 1. The matrices P j1 and Q j1

are given for j1 2 f1; 2; . . .g and q1 2 f1; 2; 3g by Stollnitz et
al. (1995b) who determined Q j1 by imposing special conditions.
In case of a two-dimensional multi-scale representation, there are
three detail signals so that the signal s j ðn1; n2Þ at level j follows
from the smoothed signal s j�mðn1; n2Þ at level j � m and the detail
signals g1j�k ðn1; n2Þ to g3j�k ðn1; n2Þ at level j � k by

s j ðn1; n2Þ ¼ s j�mðn1; n2Þ þ
Xm
k¼1

½g1j�k ðn1; n2Þ

þ g2j�k ðn1; n2Þ þ g3j�k ðn1; n2Þ� ð29Þ
with

s j�mðn1; n2Þ ¼ UT
j1�mðn1ÞD j�mUj2�mðn2Þ ; ð30Þ

with the detail signals
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g1j�k ðn1; n2Þ ¼ UT
j1�k ðn1ÞC 1

j�kW j2�k ðn2Þ

g2j�k ðn1; n2Þ ¼ W T
j1�k ðn1ÞC 2

j�kUj2�k ðn2Þ

g3j�k ðn1; n2Þ ¼ W T
j1�k ðn1ÞC 3

j�kW j2�k ðn2Þ ð31Þ

and with m chosen to be

m ¼ minðj1; j2Þ : ð32Þ

The Ij1�k � Lj2�k matrix C 1
j�k , the Lj1�k � Ij2�k matrix C 2

j�k and the Lj1�k � Lj2�k

matrix C 3
j�k contain as elements the 4 � 1 vectors of coordinates of the points which

determine the detail signals. They are called wavelet coefficients. Thus, the signal
s j ðn1; n2Þ is expressed by the low-pass filtered signal s j�mðn1; n2Þ at level
j � m and by the sum of detail signals, which are band-pass filtered versions of
s j ðn1; n2Þ, from level j � 1 to level j � m. Some wavelet coefficients in
C 1
j�k ; C

2
j�k ; C

3
j�k might be small so that they can be neglected to compress the data.

The matrices of scaling and wavelet coefficients of the level j � 1 are obtained by the
decomposition equations

D j�1 C 1
j�1

C 2
j�1 C 3

j�1

�����
����� ¼

�PP j1
�QQ j1

����
����D j j�PP T

j2
; �QQ T

j2
j : ð33Þ

The Ij1�1 � Ij1 matrix
�PP j1 and the Lj1�1 � Ij1 matrix

�QQ j1 follow from the matrices P j1

and Q j1 in (27) and (28) by

�PP j1
�QQ j1

����
���� ¼ jP j1 ; Q j1 j�1 ð34Þ

and similarly �PP j2 and
�QQ j2 . The matrices of scaling and wavelet coefficients of the lower

levels j � 2 to j � m are computed accordingly. The multi-scale representation starts
at level j with the estimate D̂D j of the matrix of control points by (15) and ends, when the
lowest level j � m with m from (32) is reached.
The points on the B-spline surface arranged in a dense grid and collected in the
v1 � v2 matrix Sw from (20) shall be determined by a multi-scale representation.
The index j is now added, i. e. S jw , to indicate the level j of resolution. The given location
parameters are again n1w1

, n2w2
with w1 2 f1; . . . ; v1g, w2 2 f1; . . . ; v2g. To com-

pute S jw , (29) is applied in connection with (30) and (31) . The matrices of B-spline
basis functions are therefore needed which also get the index j for the level of reso-
lution, thus with (8)

N j1ðn1w Þ ¼
N0q1ðn11Þ . . . NIj1�1;q1ðn11Þ
. . . . . . . . .. . .. . . . . . . . . . . . . . . : :
N0q1ðn1v1Þ . . . NIj1�1;q1ðn1v1Þ

������

������ ð35Þ

where N j1ðn1w Þ is a v1 � Ij1 matrix. It is transformed to the lower level j1 � 1 like in
(27) by

N j1�1ðn1w Þ ¼ N j1ðn1w ÞP j1 ð36Þ

where the v1 � Ij1�1 matrix N j1�1ðn1w Þ contains the B-spline basis functions of level
j1 � 1. Accordingly, the v2 � Ij2�1 matrix N j2�1ðn2w Þ of B-spline basis functions is
obtained.
In addition, the v1 � Lj1�1 matrix W j1�1ðn1w Þ of wavelet functions with
Lj1�1 ¼ Ij1 � Ij1�1 results with (28) by

W j1�1ðn1w Þ ¼ N j1ðn1w ÞQ j1 : ð37Þ



Correspondingly, the v2 � Lj2�1 matrix W j2�1ðn2w Þ and the ma-
trices of the lower levels of resolution are obtained. The points of
level j on the B-spline surface in the v1 � v2 matrix S jw are then com-
puted by

S jw ¼ N j1�mðn1w ÞD j�mN
T
j2�mðn2w Þ

þ
Xm
k¼1

½N j1�k ðn1w ÞC 1
j�kW

T
j2�k ðn2w Þ

þW j1�k ðn1w ÞC 2
j�kN

T
j2�k ðn2w Þ

þW j1�k ðn1w ÞC 3
j�kW

T
j2�k ðn2w Þ� : ð38Þ

The matrices of scaling and wavelet coefficients follow from (33).

3 CONFIDENCE INTERVALS FOR WAVELET
COEFFICIENTS BY MONTE CARLO SIMULATIONS

To determine the wavelet coefficients which can be neglected for a
data compression, statistical hypothesis testing is applied. The hy-
pothesis is formulated that a wavelet coefficient of a detail signal
expressing the height of the B-spline surface is equal to zero. To
accept or reject the hypothesis is decided by means of the confidence
interval of a wavelet coefficient which is computed by Monte Carlo
methods.
The variances and covariances of measurements are determined by
repetitions in a special multivariate linear model, cf. Koch (1999, p.
250). Experiences with estimating covariances have shown that the
number of repetitions shold surpass the number of covariances to be
estimated by a factor of about 1.3 (Koch, 2010b). Even for scanning a
small object with a high density of points like in the following example,
we get 40 000 coordinates. This makes it prohibitive to repeat the
measurements so frequently as to estimate the covariances. We
therefore assume independent observations and estimate the var-
iances only. This gives confidence intervals which are shorter
than the ones with considering covariances (Koch, 2010b). However,
it is acceptable because neglecting wavelet coefficients introduces
approximations.
According to (2), (4) and (10), the four coordinates x1; x2; H1; H2 of
the e1 � e2 points sa1a2 with a1 2 f1; . . . ; e1g; a2 2 f1; . . . ; e2g
have been measured to determine and to depict the B-spline surface.
Let nw be the number of repetitions with which x1; x2; H1 are mea-
sured and xw1a1a2 with w 2 f1; . . . ; nwg a repeated measurement
of the x1-coordinate. Its mean value �xx1a1a2 is estimated by

�xx1a1a2 ¼
1

nw

Xnw
w¼1

xw1a1a2 for

a1 2 f1; . . . ; e1g; a2 2 f1; . . . ; e2g ð39Þ

and accordingly �xx2a1a2 and
�HH1a1a2 . The estimated variances r̂r

2
x1a1a2

of
the x1-coordinates follow from

r̂r2x1a1a2 ¼
1

nw � 1

Xnw
w¼1

ðxw1a1a2 � �xx1a1a2Þ2 ; ð40Þ

the standard deviations from r̂rx1a1a2 ¼ ðr̂r2x1a1a2Þ
1=2 and accordingly

r̂rx2a1a2 and r̂rH1a1a2 . Taking the mean of the variances of the coordi-
nates over the e1 � e2 points gives the mean variance �̂rr�rr2x1 of the x1-
coordinates

�̂rr�rr2x1 ¼ r̂r2x1a1a2=ðe1e2Þ ð41Þ

and accordingly �̂rr�rr2x2 , �̂rr�rr
2
H1
and the standard deviations �̂rr�rrx1 , �̂rr�rrx2 , �̂rr�rrH1 .

We assume the measured coordinates x1; x2; H1 to be independently
normally distributed and generate mi random samples xi1a1a2 with
i 2 f1; . . . ;mig for x1 by, cf. Koch (2007, p. 197),

xi1a1a2 ¼ r̂rx1a1a2 zi þ �xx1a1a2 for

i 2 f1; . . . ;mig; a1 2 f1; . . . ; e1g; a2 2 f1; . . . ; e2g ð42Þ

with zi being a random variate from the standard normal distribution
Nð0; 1Þ. Correspondingly, mi random variates xi2a1a2 and Hi1a1a2 are
generated. The Ij1 � Ij2 scaling coefficients of the matrix D̂D j at level j
are estimated mi times with these random variates by (15) so that mi

B-spline surfaces are fitted to the generated coordinates. The multi-
scale representation of the points S jw on the surface starts according
to (38) with level j � 1 and mi matrices of scaling coefficients D j�1

and mi matrices of wavelet coefficients C
1
j�1; C

2
j�1; C

3
j�1 are com-

puted by (33). The multi-scale representation continues with level
j � 2 and ends at level j � m with m from (32).
We compute the confidence intervals of the wavelet coefficients
which determine the heights H1 of the B-spline surface. Let these
wavelet coefficients of the matrices C 1

j�k , C
2
j�k , C

3
j�k for level

j � k be collected in the vector c j�k , for which mi random variates
c i ;j�k have been determined. The 1� a Bayesian confidence region
CB for c j�k is given by, cf. Koch (2007, p. 71),

Pðc j�k 2 CBÞ ¼
Z
CB
pðc j�k Þdc j�k ¼ 1� a ð43Þ

with

pðca;j�k Þ � pðcb;j�k ÞÞ for ca;j�k 2 CB ; cb;j�k =2 CB
ð44Þ

where pðc j�k Þ is determined by the random variates c i ;j�k of c j�k .
To test the null hypothesis

H0 : c j�k ¼ 0 versus H1 : c j�k 6¼ 0 ; ð45Þ

we use the confidence region CB defined by (43) and (44). H0 is
accepted, if the value 0 lies within CB . Otherwise, the hypothesis
is rejected, cf. Koch (2007, p. 82). To determine the confidence in-
terval for one component of c j�k , the probability of the component
lying within a cell of suitable width is computed by the relative fre-
quency. The probability at both ends of the histogram is added such
that (44) is fulfilled until the probability a is reached. For mi random
variates, mi � 1 cells are chosen (Koch, 2010b).
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4 THRESHOLDS FOR DATA COMPRESSION

Thresholds for data compression by a multi-scale representation of
signals are discussed for an example. Rectangular coordinates of
points on the surface of a concrete beam under the ceiling of a base-
ment are measured by the laser scanner Leica HDS 3000 in its local
coordinate system. The origin lies in the center of the instrument, the
z-axis points to the zenith, the y-axis coincides with the center of lines
of sight of the instrument and the x-axis is perpendicular to y and z.
Because of the edges of the concrete beam and of the ceiling, the
points are scanned with a high density. The coordinates of 100 points
parallel to the z-axis are measured with coordinate differences of
about 6 mm and 100 points parallel the x-axis with the same differ-
ences. The y-coordinates vary between 4.01 m � y � 6.45 m.
The B-spline surface (1) is fitted to the measured coordinates by ap-
plying the lofting method (15) to estimate the unknown control points.
The coordinate x1 in (2) is identical with the x-coordinate of the laser
scanner, x2 is equal to the z-coordinate and the height H1 is obtained
by ym � y with ym being the maximum value of the y-coordinate. The
coordinate H2 follows from the intensity of the reflected laser beam of
a point measured by the laser scanner. We set q1 ¼ q2 ¼ 3 in (4) for
a smooth fit and choose the resolution levels j1 ¼ j2 ¼ 6 for n1 and
n2, thus j ¼ 6 from (23). The numbers Ij1 and Ij2 of unknown control
points, i. e. scaling coefficients, then follow with Ij1 ¼ Ij2 ¼ 67 from
(22). In addition to fitting the B-spline surface to the 100�100
heights H1, a B-spline surface with the same parameters is also fitted
to the intensities H2. The measured points plus residuals from (17)
are depicted in Fig. 1 by their intensities plus residuals. The colors of
the intensities result from the software ‘Cyclone 7.1’ of the Leica HDS
3000. It is obvious from Fig. 1 that the density of the measured points
is sufficient to represent the edges of the concrete beam and the
edge of the ceiling.
The standard deviation r̂rH1 of the heights H1, which results from the
variance factor (18) of the fit of the B-spline surface to the measured
heights H1, follows with

r̂rH1 ¼ 2:23 mm : ð46Þ
To compute the variances of the measurements, the scans of the
concrete beam under the ceiling have been repeated nw ¼ 20 times.
These repetitions give a mean standard deviation �̂rr�rrH1 by (41) of

�̂rr�rrH1 ¼ 2:13 mm : ð47Þ

This value agrees well with (46) and shows that the B-spline surface
is fitted to the heights H1 with a standard deviation which approx-
imates the standard deviation of the measurements.
To preserve the resolution from the high density of the measure-
ments, a grid of v1 � v2 ¼ 210� 210 points on the fitted surface
is computed by (20), which is more than the two-fold of the density of
the measurements. The results are shown in Fig. 2, which is enlarged
in comparison to Fig. 1. Its orientation is slightly changed and only the
upper right part of the concrete beam is depicted. The edges of the
concrete beam are now visible in more detail than in Fig. 1.
As mentioned, a high density of the scans is needed because of the
edges of the concrete beam and the ceiling. Apart from the edges,
there are approximately planar surfaces. A high redundency of infor-
mation therefore exists in the B-spline representation of the concrete
beam so that it should be compressed. The B-spline surface is es-
timated for the resolution level j ¼ 6, the multi-scale representation
therefore starts according to (29) with level j ¼ 5 and ends with
j ¼ 0 because of m ¼ 6 from (32). The number of scaling and wa-
velet coefficients for the different levels are presented in Table 1. It
also shows the maximum absolute values of the wavelet coefficients
for H1.
A multi-scale representation is computed by (38) for the dense grid of
210� 210 points partly shown in Fig. 2. For the Monte Carlo simu-
lations, mi random variates are generated by (42) and mi matrices
C 1
j�k , C

2
j�k , C

3
j�k of wavelet coefficients for each level j � k in (38)

are computed. The random variates for the wavelet coefficients for H1
are collected in the vectors c i ;j�k and for each coefficient the null
hypothesis (45) is tested with 1� a ¼ 0:95 in (43). Accepting the
hypothesis means that the wavelet coefficient does not significantly
differ from zero so that it can be neglected. A threshold for the data
compression is therefore established by the confidence interval. The
number of eliminated wavelet coefficients thus obtained are given
under method 1) in Table 2. It shows that 2 915 wavelet coefficients
of the 3 264 of Table 1 can be neglected for level j ¼ 5 which is
89.3% of 3 264. For level j ¼ 4 424 coefficients or 49.1% of
864 can be eliminated. Only a few coefficients are neglegible for
the levels j ¼ 3 and j ¼ 2. This is reasonable because high frequen-
cies model the edges and are not needed to represent the planes.

Fig. 1 | 100 � 100 measured points plus residuals depicted by intensities
plus residuals of the B-spline surface fit

Fig. 2 | Part of the 210 � 210 computed points with intensities on the fitted
B-spline surface
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A number of mi ¼ 100 000 is recommended to compute confi-
dence intervals with at least two significant digits (Koch, 2008).
Numerical tests have shown that for detecting neglegible wavelet
coefficients mi ¼ 50 000 is a sufficiently large number.
The coordinates of the grid of 210� 210 points are computed for
the levels j ¼ 5 to j ¼ 0 with all wavelet coefficients and with the
coefficients minus the neglected ones. The rms differences of the
heights H1 are computed and shown under method 1) in Table 2.
It is 1.50 mm for level j ¼ 5 so that the ratio of r̂rH1 from (46) to
the rms value is 2.23 mm/1.50 mm = 1.49. This ratio has to be
greater than one, otherwise the data compression distorts the results.
The ratio is 2.23 mm/1.66 mm = 1.34 for level j ¼ 4. For a rigorous
data compression the levels j ¼ 5 and j ¼ 4 are chosen. Thus,
2 915 + 424 = 3 339 wavelet coefficients are neglected which is
74.4% of the 4 489 scaling coefficients of level j ¼ 6 in Table 1.

That means a considerable reduction. The resulting points on the
fitted surface are shown in Fig. 3. Fig. 2 and Fig. 3 have approxi-
mately the same orientation and scale. A comparison shows that
the positions of the points have slightly changed but the results
of the data compression is acceptable. Not only the amount of a
coefficient is considered but also its standard deviation, which de-
termines the length of the confidence interval, when selecting the
wavelet coefficients, which can be discarded, by confidence intervals.
A simpler procedure for eliminating wavelet coefficients is obtained if
the absolute maximum value of the coefficients are used. Letmcj�k be
the maximum value in the vector c j�k of level j � k in (43) to (45).
The threshold tj�k for eliminating a coefficient at level j � k is then
determined by

tj�k ¼ pcmcj�k =100 ð48Þ

where pc denotes a chosen percentage. The values for mcj�k are
given in Table 1. The percentage pc is now selected for each level
j ¼ 5 to j ¼ 0 such that the neglected wavelet coefficients lead to
rms differences which are equal to the rms differences of method 1)
in Table 2. The number of neglected coefficients are presented under
method 2) in Table 2. The comparison with method 1) shows that less
coefficients are neglected because coefficients larger than the
threshold but with large standard deviations are accepted.

Level j 6 5 4 3 2 1 0

scaling coefficients 4 489 1 225 361 121 49 25 16

wavelet coefficients 3 264 864 240 72 24 9

max. abs. wav. coeff. [mm] 5.1 14 38 58 128 1 215

Table 1 | Number of scaling and wavelet coefficients and maximum absolute
values of wavelet coefficients for decreasing levels j

Level j 5 4 3 2 1 0

1) neglected wavelet coeff. 2 915 424 13 2 0 0
by confidence intervals
rms differences in [mm] 1.50 1.66 1.67 1.67 1.67 1.67

2) neglected wavelet coeff. 2 885 313 12 1 0 0
by rms diff. from 1)

rms differences in [mm] 1.50 1.66 1.67 1.67 1.67 1.67

3) neglected wavelet coeff. 2 915 751 182 50 12 1
by 14.4% of max. wav. coeff.

rms differences in [mm] 1.54 3.00 6.07 10.0 15.4 16.8

4) neglected wavelet coeff. 2 885 26 1 0 0 0
by identical rms diff.

rms differences in [mm] 1.50 1.50 1.50 1.50 1.50 1.50

Table 2 | Number of neglected wavelet coefficients and rms differences of H1for decreasing levels j obtained by four different methods

Fig. 3 | Part of the 210 � 210 computed points with intensities on the fitted
B-spline surface after data compression by confidence intervals at levels j ¼ 5
and j ¼ 4

Fig. 4 | Part of the 210 � 210 computed points with intensities on the fitted
B-spline surface after data compression by identical rms differences at level
j ¼ 5
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The same percentage pc in (48) for all levels j ¼ 5 to j ¼ 0 is now
selected for discarding the wavelet coefficients. It is set to
pc ¼ 14:4% to obtain the same number of 2 915 neglected coeffi-
cients for level j ¼ 5 as in method 1). The results together with the
rms differences for H1 are given in Table 2 under method 3). Because
of the increase ofmcj�k in Table 1, the rms differences for H1 increase
rapidly and surpass already for level j ¼ 4 the standard deviation r̂rH1
in (46). The data compression therefore has to stop at level j ¼ 5 for
method 3).
An rms difference for H1 of 1.50 mm is obtained with method 1) for
level j ¼ 5. If pc in (48) is chosen such that for each level j ¼ 5 to
j ¼ 0 the same rms value is obtained, one finds the neglected wa-
velet coefficients under method 4) in Table 2. Because of only 26
neglected coefficients at level j ¼ 4, the data compression should
stop at level j ¼ 5 so that 2 885 wavelet coefficients are neglected
which is 64.3% of the 4 489 scaling coefficients of level j ¼ 6
in Table 1. The resulting points on the fitted surface are shown
in Fig. 4, which also has approximately the same orientation and
scale as Fig. 2. The results are very similar to ones of Fig. 3. The
methods 3) and 4) are based on the rms difference for H1. To obtain
the rms value, the ratio of r̂rH1 to the rms value should be chosen
close to 1.5 as for method 1) at level j ¼ 5. This avoids that the data
compression distorts the results. The rms value is then determined by
r̂rH1=1:5 and one can proceed as in method 3) or 4).

5 CONCLUSIONS

It has been shown that neglecting wavelet coefficients by means of
their confidence intervals leads to a preferable method of data com-
pression. However, due to the computer time needed for the Monte
Carlo simulations, the application of this method is only practical in
case of a restricted number of measurements. As an alternative, a
percentage of the maximum absolute value of the wavelet coefficients
can be used to determine the threshold for elimating the coefficients.
The ratio of the standard deviation, with which the B-spline surface is
fitted to the measured heights, to the rms difference between the
heights computed with and without data compression should be
set close to 1.5. This gives the rms value and the percentage to
be chosen as threshold. The procedure ensures that the data com-
pression does not distort the points computed on the fitted B-spline
surface.
Acknowledgment: The author is indebted to Ernst-Martin Blome for
assistance with the measurements and the graphical depiction of the
results.
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