
This paper demonstrates an iterative optimisa-
tion algorithm, where a pre-defined low-fre-
quency geoid model is simulated based on as-
sumptions about mass-density distributions
within the upper mantle. This aims to model low-
frequency spectra of the anomalous external
Earth’s gravity field to produce a realistic syn-
thetic Earth gravity model (SEGM). All mass
anomalies are represented by an envelope of 3D
discrete bodies (prisms) that refer to a regular
geographic grid on a spherical reference surface.
The optimisation algorithm uses forward gravity
field modelling techniques based on Newton’s
integral to derive the gravitational potential of
each 3D mass element, and subsequently its effect
on the synthetic (simulated) geoid height via
Bruns’s formula. Geoid height differences from a
given reference model (EGM2008) are minimised
by applying the mass-model optimisation algo-
rithm that iteratively modifies the volume (prism
height) of each mass element introduced. Finally,
the effectiveness of the optimisation algorithm is
demonstrated through a numerical example for
regional-scale geoid modelling over Austria. A
mass-model was created that inversely produces a
similar pattern compared to the observed gravity
field given by EGM20008 where the differences
are within several centimetres of the geoid height.

1 Introduction

Forward gravity-field modelling has become a more pro-
minent geodetic topic, as simulations of the Earth’s exter-
nal gravity field – so-called Synthetic Earth Gravity Mod-
els (SEGMs) – offer the opportunity to validate gravity-
field-related algorithms, theories, techniques and any re-
lated computer software (e.g., FEATHERSTONE 1999, KUHN

and FEATHERSTONE 2005, BARAN et al. 2006, TSOULIS and
KUHN 2007). The advantage of a SEGM is that the derived
gravity field quantities are self-consistent within the pre-
defined model assumptions, such as with respect to a si-
mulated mass distribution. Forward gravity field model-
ling has become more attractive principally because of
the availability of high-performance computer facilities.
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VAN GELDEREN (1991) generated a relatively simple 2D
SEGM, which showed that even a 2D synthetic world
can contribute to a better understanding of some aspects
of physical geodesy. Nowadays and thanks to supercom-
puters, we are able to deal with far more complicated 3D
models based on higher resolution and more accurate lo-
cal, regional and global data sets. Due to a global data pool
of public-domain and networked databases, the user can
easily decide how sophisticated and/or realistic the Earth’s
gravity field can be replicated by a SEGM.
A niche of the geodetic community has constructed
SEGMs on local, regional and global scales for various
applications (e.g., BARTHELMES and DIETRICH 1991, VERM-

EER 1995, PAIL 1999, HAAGMANS 2000, KUHN and FEATHER-
STONE 2005, BARAN et al. 2006). Generally, there are two
different approaches to create a SEGM (e.g. PAIL 1999);
either using a source model or an effect model. In general,
source models assume a mass-density distribution within
the solid Earth and apply forward gravity modelling tech-
niques (e.g., KUHN 2003, KUHN and FEATHERSTONE 2005).
Effect models follow an opposite approach without any
pre-defined assumptions of masses within the Earth
(e.g., TZIAVOS 1996, HAAGMANS 2000, CLAESSENS 2002).
Instead they are based on external observations of the
Earth gravity field usually combined in an Earth Gravity
Model (EGM). Both options are in common use and have
been successfully applied in geodetic studies. Another
possibility to construct a SEGM is to combine source
and effect models in so-called hybrid source-effect mod-
els. These models combine the advantage of the effect
model – considering the long-wavelength structure
from the global gravity model – with the advantage of
the source model – the high-frequency impact of near
and high-resolution surface mass-density distributions
(e.g., BARAN et al. 2006).
In order to create a realistic simulation of the Earth’s grav-
ity field, there is a tendency to use already known (global)
information about the real Earth instead of making vague
and unrealistic model assumptions. In doing so, however,
it is neglected that even additional unrealistic mass model
assumptions may lead to further SEGM improvements.
This is even more important considering that currently
available information on the Earth’s topography, bathy-
metry, crust and mantle seem to be insufficient for recon-
structing the global anomalous gravity field signal, with
some differences in the geoid height being more than
twice as large as the signal range itself (KUHN and FEATH-
ERSTONE 2005, FELLNER et al. submitted).
The aim of a SEGM is to reproduce gravity field-related
parameters as-realistically-as-possible, whether the model
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assumptions used are close to reality or not. While the for-
mer will increase the acceptance of a SEGM, the latter is
permissible as long as the SEGM is used only in its de-
finition space; the space where it reproduces realistic
gravity field-related parameters. Here we explore the ef-
fect of one particular mass element (prism) on the simu-
lated geoid height and how this information can be used in
an iterative mass-model optimisation algorithm.
In the remainder of this article, we associate a particular
mass element to a right rectangular prism with flat top and
flat bottom, but acknowledge that other geometries can be
employed. We demonstrate the ability of our developed
algorithm to adjust regional mass distributions that simu-
late the Earth’s anomalous gravity field signal. Here we
specifically focus on the lower frequency constituents and
demonstrate the potential of the optimisation algorithm to
improve the low-frequency spectra of a SEGM by apply-
ing it to regional-scale geoid modelling over Austria.

2 The influence of single mass elements on the
synthetic geoid height

Since each mass element within the solid Earth has an ef-
fect on the external geopotential, and that no significant
knowledge about the mass-density distribution of deeper-
seated masses within the lower mantle is currently avail-
able, it is necessary to assume masses at user-defined lo-
cations when following the synthetic approach. Here we
start with some elementary considerations on the effect of
single mass elements on the simulated geoid height before
presenting our iterative optimisation algorithm in more
detail.
Figure 1 shows one particular mass element at a user-de-
fined surface at depth d below a reference surface (e.g.,
reference sphere or ellipsoid on a global scale). Here
we assume the mass element to be centred over the parti-
cular grid point Pij of a regular geographic grid where the
subindices i ¼ 1 ::: lat_max and j ¼ 1 ::: lon_max indi-
cate a specific grid element.
Based on Newton’s law of gravitation, the effect on the
gravitational potential dVðQijÞ at the location Qij on the
reference surface induced by a single prism located at
Pij is given by (e.g., MADER 1955, NAGYet al. 2000, 2002)

dVðQijÞ ¼ dVij ¼ G � qij � uðPij;QijÞ ð1Þ
where

uðPij;QijÞ ¼
ð
m

dm
lðPij;QijÞ ¼

ð

x

ð

y

ð

z

dxdydz

lðPij;QijÞ ð2Þ

is the (triple) volume integral over the body m of the prism,
qij it the constant mass-density, lðPij;QijÞ is the Euclidian
distance between the computation point Qij and the mass
element located at Pij and G indicates Newton’s gravita-
tional constant. For more details on the explicit formulas,
the interested reader is referred to MADER (1955) and
NAGY et al. (2000, 2002). Using Bruns’s formula (e.g.,
HEISKANEN and MORITZ 1967), the effect on the gravita-
tional potential dVij can be converted into the effect on
the synthetic geoid height

dNðQijÞ ¼ dNij ¼ dVij

cij
ð3Þ

where c is the latitude-dependent normal gravity on the
surface of the used reference gravity model (e.g., on
the surface of the GRS80 reference ellipsoid). Finally,
the superposition of all mass element effects provides
the synthetic geoid height at location Qij by

NðQijÞ ¼ Nij ¼
X
ij

dNij: ð4Þ

The quality of the synthetic geoid height can be evaluated
through comparison with an EGM expressed by the dif-
ferences

�Nij ¼ NEGMij � Nij: ð5Þ
where the EGM has been evaluated through spherical har-
monic synthesis at the same grid locations Qij.
For the practical evaluation of equation (1), it is necessary
to define the depth d of the mass elements, as well as their
dimensions and total mass. The latter are described by the
prism base surface, height and a constant mass-density. As
will be described in the next section, we will fix the depth
d, the constant mass density qij and indirectly the base sur-
face through the grid resolution used, and thus only adjust
the height (or volume) of the prism. Our calculations of
the gravitational potential (cf. equation 1) are based on
the principles described in KUHN (2000, 2003), where
the gravitational effect of an elliptical (or spherical)
mass element is evaluated by that of a mass equal prism

Fig. 1: Geometric relation between a particular mass ele-
ment at the grid point Pij at a user-defined depth d and its
effect on the synthetic geoid height dNij at the same horizon-
tal grid location. Both the geoid height and the depth of the
mass element are measured from the same reference surface
(e.g. a reference sphere or ellipsoid)
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of the same height and centred at the same horizontal lo-
cation.
As an aside, the assumed depth d of the mass elements can
be chosen dependent on the frequency bandwidth of the
geoid height that the user wants to approximate. Follow-
ing the formula of BOWIN (1983), it is possible to deter-
mine the minimum depth dn of a mass element through

dn ¼ R

n� 1
: ð6Þ

where the spectral content of the geoid height to be mod-
elled is expressed by the spherical harmonic degree n. Ac-
cording to equation (6), geoid contributions, dependent on
an individual degree n, have a fixed ratio value in propor-
tion to that of assumed masses at a depth dn of some frac-
tion of the Earth radius R.
Finally, it is important to acknowledge that a constant
depth for all mass elements provides significant computa-
tional advantage through a much faster evaluation of
equation 2, but this is not an essential requirement.

3 An iterative mass-model optimisation
algorithm

Based on the elementary relations presented in the pre-
vious section, we now present an iterative mass-model op-
timisation algorithm by evaluating the geoid height differ-
ences �Nij introduced by equation (5). Here we assume
that the synthetic geoid heights at the locations Qij are
co-located with the grid locationsPij of themass elements,
thus there are as many geoid height differences as mass
elements (cf. Figure 1). Depending on the sign and mag-
nitude of the geoid height difference�Nij, it is possible to
provide a simple assessment of the underling (simulated)
mass-model as the synthetic geoid heights directly depend
on it (cf. equation 3).
Assuming that only the mass element at the location Pij is
responsible for the signal in �Nij, then a positive differ-
ence indicates mass deficiencies of the corresponding
mass element, whereas a negative difference indicates
mass excess. We account for the mass deficiencies/excess
by adjusting the corresponding prism height to a greater/
smaller value, respectively. Furthermore, based on the
magnitude of �Nij, a strategy can be devised in order
to derive the amount of change in the prism height (see
step 4 of the iterative procedure below). While this adjust-
ment strategy is rather simple, it completely neglects the
effect of neighbouring mass elements (theoretically all
other mass elements), thus further adjustments have to
be made. Below we provide a step-by-step description
for an iterative adjustment procedure that accounts for
this shortcoming.
STEP 1: In order to start the iterative procedure, initial
values for the heights of each mass-prism have to be de-
fined. If no prior information is available, the initial
heights can be set to zero, thus the iteration starts with
zero additional masses. Furthermore, the (constant) depth
d and the constant mass density qij for all prisms have to be
defined. The size of the base surfaces of the prisms are
provided indirectly by way of the grid resolution used.

STEP 2: Based on the initial values defined in step 1, the
effect on the synthetic geoid is derived through the eva-
luation of equation (4). This is the most time-consuming
part of the procedure because equation (2) has to be eval-
uated for all combinations between computation points
and mass elements. For example, for a grid with lat_max
by lon_max elements, equation (2) has to be evaluated
(lat_max � lon_max)2 times. Some improvements that re-
duce the computational effort can be introduced, such as
the use of coarser resolution prism and mass bodies of
simpler geometry (e.g., point masses) for more distant
masses with respect to the computation point (cf. KUHN

2000, 2003).
STEP 3: The synthetic geoid height resulting from step 2
is used to derive the geoid height differences with respect
to the EGM (cf. equation 5). The magnitudes of the dif-
ferences provide information on the closeness of the
SEGM to the ‘observed’ EGM. This implicitly assumes
that the EGM is error-free, which is an acceptable assump-
tion in the construction of a SEGM. Based on the geoid
height differences (a convergence criterion), the decision
is made if a further improvement of the simulated mass
model (e.g., the prism heights or mass-density) is re-
quired. Here we use the overall RMS value (RMS-fit)
of the differences and compare it to a pre-defined thresh-
old. If unsatisfactory, the prism heights will be adjusted
further in step 4, otherwise the iteration will be stop-
ped.
STEP 4: Adjust the prism heights used in step 2 based on
the sign and magnitude of the geoid height differences ob-
tained in step 3. The adjustment is done by an incremental
change dhij of the corresponding prism heights. The incre-
mental change can be either a constant value or dependent
on the magnitude of the geoid height differences. The lat-
ter is more sensible as it gives optimisation preference to
areas exhibiting larger differences. Here we apply a pre-
defined increment dhij only if the geoid height is larger
than a given threshold. Finally, we introduce an increment
that is variable with the number of iteration steps in the
way that larger increments are used at the early stages
of the iteration and smaller increments at later stages
(cf. Table 1 in section 4). Test calculations have revealed
that this is a simple but very effective way to dramatically
reduce the number of iterations steps. After all prism
heights have been adjusted, repeat steps 2 and 3 as long
as the RMS-fit is larger then the given threshold (cf.
step 2).
The iterative mass-model optimisation algorithm de-
scribed above has been implemented in a FORTRAN95
program. In order to run the program, the user has to de-
fine the following settings that will have major influence
on the structure of the final mass-model as well as the con-
vergence behaviour of the iterations:
– Depths of the mass elements considered. Currently, all
mass elements are considered at the same constant
depth. According to equation (6), the user can control
what frequency band-width will be modelled.

– Constant mass-density of all prisms used. Together with
the depth information, the user can replicate geophysi-
cal information, such as the average depths and mass-
density of an anomalous mass distribution.
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– Horizontal extension of the prisms, which is defined indir-
ectly through the selection of the grid resolution. KUHN and
FKEATHERSTONE (2003) provide some information on the op-
timum spatial resolution required to model the geoid height
to a pre-defined precision level.

– Maximum number of iteration steps. This setting is very im-
portant in test or validation calculations when an inappro-
priate height increment has been selected (e.g., the conver-
gence can be rather slow if this has been set inappropri-
ately).

– Criteria to stop the iteration (see step 3 of the iterative pro-
cedure). As mentioned above, here a threshold can be de-
fined for the overall RMS-fit of the synthetic model to the
EGM.

– Threshold used for a particular geoid height difference to
decide if the corresponding prism height will be adjusted
(see step 4 of the iterative procedure).

– Height increment used to improve the prism heights in each
iteration step. The user can decide what increment value is
used at each particular iteration step or interval of iteration
steps (see step 4 of the iterative procedure).

Finally, it is important to mention that similar optimisation al-
gorithms could be developed that do not change the height of
each prism. For example, a fixed height could be introduced
for each prism (constant or variable with location) and their
mass-densities could be adjusted. This leads to a lateral vari-
able mass-density distribution. Such a strategy would be useful
when prior information on the geometry of an anomalous mass
distribution is known (e.g., one of the major discontinuities in
the upper mantle). Alternatively, keeping size and mass-den-
sity fixed, the location (i.e., depth) of each prism can be ad-
justed.
Furthermore, the mass body used can be changed. For exam-
ple, due to rather simple mathematical relations, the fit of a set
of point masses is frequently done in gravity field modelling
(e.g., BARTHELMES and DIETRICH 1991, CLAESSENS et al. 2001,
VERMEER, 1995). However, when constructing a SEGM, the
kind of optimisation used is of secondary importance as
long as the SEGM produces a realistic representation of the
Earth’s gravity field. The kind of optimisation may become
important for the convergence behaviour, which however
needs to be investigated further. Instead, we focus on the ite-
rative optimisation algorithm only, but acknowledge other al-
gorithmic possibilities.

4 Modelling the low-frequency geoid over Austria

In order to demonstrate the effectiveness of the developed
mass-model optimisation algorithm, we apply it to regional-
scale geoid modelling over Austria. We focus on the low-fre-
quency bandwidth with wavelengths of few hundred kilo-
metres, corresponding to a maximum spherical harmonic de-
gree of N ¼ 90. To validate the synthetic geoid, EGM2008
(PAVLIS et al. 2008) was used up to degree and order
N ¼ 90 and evaluated on a 0.1 � by 0.1 � geographic grid
over the area bounded by 9 �E – 18 �E and 46 �N – 50 �
(cf. Figure 2). This has been done using the harmonic synthesis
routine provided by the EGM2008 Development Team (EGM
2008). The higher than Nyquist grid resolution has been cho-
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sen in order to avoid unrealistically large step-functions
(large height changes) between neighbouring prisms of
the SEGM.
Based on the relation provided by BOWIN (1983) (cf. equa-
tion 6) we use a constant depth for the prisms of 33 km,
which is appropriate to model spectral constituents up to a
spherical harmonic degree of N ¼ 192. This corresponds
to approximately twice the spectral content as represented
by N ¼ 90, which should be more then sufficient to model
regional-scale geoid heights. In addition, the depth of
33 km corresponds approximately to an average depth
of the Mohorovičić discontinuity (Moho) over the area
considered (e.g., see Figure 6 in ABD-ELMOTAAL and
KÜHTREIBER 2003). The anomalous masses have been
assigned with a constant mass-density anomaly of
�q ¼ 1000 kgm�3, which is a valid assumption within
the synthetic approach, as it is not the aim to create a rea-
listic subsurface mass model, but rather to simulate as clo-
sely as possible the geoid heights provided by EGM2008
(cf. Figure 2).
For the selected low-frequency spectrum, the observed
geoid height values implied by EGM2008 over Austria
range betweenþ 43.7 m andþ 50.5 m, with a mean value
of þ 47.4 m. The spatial pattern is characterised by an in-
crease of the geoid height from East to West with mini-
mum values over the flatter areas in the North-East (e.g.,
the Vienna basin) and maximum values in the West repre-
senting the mountainous area of the Austrian Alps. There-
fore, the spatial pattern shows some general correlation
with the underlying topography, which is consistent
with gravimetric geoid modelling results over this area
(ABD-ELMOTAAL and KÜHTREIBER 2003).
An optimised mass-model over Austria was obtained by
the application of the developed iterative optimisation al-
gorithm (cf. Figure 3). It was obtained after 202 iteration
steps when the RMS-fit fell below the pre-set threshold of
5 cm. The number of iteration steps, height increments
used and convergence behaviour are outlined in Table 1.

The processing time was about seven hours using the iVec
supercomputing facilities (www.ivec.org) with the fol-
lowing specifications (host type: SGI Altix XE 1300,
512 CPUs, 1TB RAM).
The final mass-model is illustrated in Figure 3, showing
the envelope surface given by all prisms on the regular
geographic grid of 0.1 � by 0.1 � resolution. The prism
heights range between 540 m and 2850 m, with an aver-
age height of 1679 m. The spatial distribution of the prism
heights neither correlates with the spatial pattern of the
geoid height nor the topography over Austria. This is
an effect of the mutual interaction of all mass elements
that produce the final geoid height. That is, there is not
a one-to-one correlation between the mass layer and
the Austrian geoid because the topography is handled se-
parately from the optimised 33 km-depth mass layer.
Finally, the synthetic geoid obtained from forward gravity
modelling the optimised mass model is illustrated in Fig-
ure 4, showing the same spatial pattern then that of
EGM2008 (cf. Figure 2). This demonstrates the effective-
ness of the developed mass model optimisation algorithm.
The differences, representing model errors, are displayed

Fig. 2: The EGM2008-implied low-frequency geoid over
Austria developed up to degree and order N ¼ 90. (units
in metres; Mercator projection)

Fig. 3: 3-D plot of the final mass model assumed at a refer-
ence depth of 33 kilometres showing all prisms (units in
metres).

Table 1: Layout of the optimisation and convergence
behaviour expressed by the overall RMS-fit

Iteration Steps Height increment
dhij [m]

RMS-fit
[m]

1–8 500 3.41

9–78 100 0.78

79–128 50 0.41

129–178 20 0.16

179–202 10 0.05

processing time: 07 h:11 m:17 sec (iVec/XE)
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in Figure 5 ranging between � 10 cm and þ 9 cm with an
RMS value of � 5 cm, as specified by the convergence
criterion. Like the mass model, the spatial pattern of
the differences neither correlates with the geoid heights
nor the topography over Austria.

5 Conclusions

This paper has presented a new way of modelling the low-
frequency geoid spectrum based on forward gravity mod-
elling an optimisedmass model at the crust-mantle bound-
ary. Test calculations over Austria have shown that the
developed approach is able to provide a mass model
that is consistent with the observed low-frequency gravity
field expressed here by the geoid height. Differences be-

Fig. 4: Synthetic geoid obtained by forward gravity model-
ling of the optimised mass model (units in metres; Mercator
projection)

Fig. 5: Differences between the EGM2008 and synthetic
geoid height. (units in centimetres; Mercator projection)

tween the synthetic (simulated) geoid and that implied by
EGM2008 are below 10 cm with an RMS value of
� 5.0 cm, as was specified in the optimisation loop.
The modelling is based on an iterative mass model opti-
misation algorithm that fits a set of prisms so to provide
minimum differences when comparing the induced grav-
itational potential with that of an EGM. The core of the
algorithm is based on forward gravity modelling in the
space domain, thus the direct application of Newton’s in-
tegral on the simulated mass model. As shown over Aus-
tria, the use of 3D mass elements (prisms) allows for the
development of mass distributions with an almost arbi-
trary geometry. This is an advantage of using prisms com-
pared to mass bodies of simpler geometry (e.g., point
masses or surface mass elements). However, due to the
more complex computation formulas, the use of prisms
is limited when considering high-resolution applications
over large areas as the computation time will become
the major issue.
While the developed algorithm has been tested for low-
frequency geoid modelling on a region-scale, it can be
equally applied to any frequency band-width, as well as
to any computation region (e.g., local, regional and glo-
bal). Furthermore, the same procedure can be used with
other more or less complex mass bodies. Once again,
the limitations will be given by the computation power
available. However, with the increased availability of
supercomputers, the boundary can be pushed to more
complex applications.
Finally, it should be mentioned again that the resultant
mass model may be far from reality, thus any geophysical
interpretation of it has to be handled with extreme care,
considering all assumptions made. This is certainly the
fact when only one major mass source is used (e.g. one
mass layer at the crust-mantle boundary) as, in this
case, all other existing mass anomalies will be accounted
for in this mass source. However, this is not a problem
when constructing a SEGM as it is not to be used for geo-
physical interpretation. In order to improve the mass mod-
el further, the developed procedure can be applied to an
arbitrary number of mass sources (e.g., multiple mass
layers), thus it offers the possibility to incorporate other
geophysical information on the Earth’s interior.
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