
This paper presents an analysis of the accuracy of
estimation results obtained by the method of least
absolute deviations. Theoretical considerations
have been supplemented with an example of use
on a simulated levelling network.

1 Introduction

In his paper (VUKTOTIĆ, 1982) VUCTOTIĆ proposed a meth-
od of the least absolute deviations (LAD) as an alternative
adjustment to the commonly applied the least squares
method. The LAD method is competitive, especially
when observation results contain gross errors. One of
the factors discouraging the application of the LADmeth-
od is its complicated algorithm, which employs the prin-
ciples of linear programming. It seems that owing to its
interesting properties, including the identification of ob-
servations suspected of containing gross errors, the meth-
od should gain more popularity. In this paper the proposal
of LADmethod will be completed with the analysis of the
accuracy of obtained calculations.

2 The LAD method

The adjustment with the LAD method is done in an ite-
rative process, employing techniques of linear program-
ming. This study presents solutions of the LAD method
given in a matrix notation. Thanks to this formula, it
will be possible to determine a covariance matrix, thereby
making an assessment of the accuracy of the adjustment
results.
The following function of target (taking into account the
weights pi ¼ 1=m2

i ) corresponds to the LAD method
(VUKTOTIĆ, 1982)

min
X

wLADðXÞ ¼
Xn
i¼1

pijmij ¼
Xn
i¼1

pijASði;�ÞX� Lij ð2:1Þ

where: mi – element of vector of corrections, L – vector of
absolute terms, AS – known matrix of coefficients, X –
vector of estimated model parameters, the notation
ASði;�Þ means an established value of the „i“ line and all
the „�“ columns in the AS matrix.

There is an absolute value in the function of purpose. In
order to solve the problem (2.1), techniques of linear pro-
gramming can be employed. The problem of linear pro-
gramming is usually formulated in the following formula

min
x

UðxÞ ¼ cTx ð2:2Þ
with these restrictions

Ax ¼ L
x � 0

�

While: c, L, x – columns vectors.
The function of target wLADðXÞ should be therefore trans-
formed so that it can be noted in a form similar to UðxÞ.
For this purpose, the vector of corrections should be
shown as the difference between two non-negative quan-
tities ui and wi (e.g.. VUKTOTIĆ, 1982), hence

mi ¼ ui � wi ui; wi � 0; i ¼ 1; 2; :::; n ð2:3Þ
with

ui ¼ 0 for mi � 0

wi ¼ 0 for mi > 0 ð2:4Þ
The function of target, described by the relationship (2.1)
can now be noted as follows

min
x

wLADðXÞ ¼
Xn
i¼1

pijmij ¼
Xn
i¼1

pijui þ wij ð2:5Þ

with restrictions

vi ¼ ASði;�ÞX� Li ð2:6Þ
or

ASði;�ÞX� ui þ wi ¼ Li ui; wi � 0 i ¼ 1; 2; :::n ð2:7Þ
The optimisation problem (2.5) can be described with the
following relationship

Xm
j¼1

0Xj þ
Xn
i¼1

pijui þ wij ¼ min ð2:8Þ

with restrictions

ASði;�ÞX� ui þ wi ¼ Li ð2:9Þ
The relationships (2.8) and (2.9) are the problems of linear
programming, which can be solved by for example the
simplex method.
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In geodetic analyses, the unknowns Xj can assume nega-
tive values, which is contrary to the concept of the simplex
method. Consequently, new unknowns should be intro-
duced to the calculations

�XXj ¼ Xj þ �XXmþ1 ð2:10Þ
with

�XXmþ1 ¼ maxð0; �minXjÞ ð2:11Þ
Formula (2.10) means that

�XXmþ1 ¼ 0 when minXju < 0

�minXj when minXj > 0

�

Introducing a new variable �XXj results in the necessity to
extend matrix A by an additional column Amþ1. Elements
aði;mþ1Þ ¼ ½Amþ1� of the column are calculated from the
following relationship

aði;mþ1Þ ¼ �
Xm
j¼1

ai;j ð2:12Þ

Taking into account the relationships (2.10) and (2.12),
the optimisation problem (2.8) with restrictions (2.9)
can be presented in the following final form

Xmþ1

j¼1

0�XXj þ
Xn
i¼1

pijui þ wij ¼ min ð2:13Þ

with restrictions

ASði;�Þ �XX� ui þ wi ¼ Li ð2:14Þ
where: �XX; u; v � 0.
The adjustment problem thus prepared will be solved by
the simplex method. What follows is a general algorithm
of the method in a matrix notation.
1. Seeking a basic solution
xB ¼ h0 ¼ A�1

B PL, (xB – vector of basic variables, h0 –
vector of basic variables values, A�1

B – inverse of a sub-
matrix of coefficients at the basic variables,
P ¼ Diagðp1; ::::; pnÞ – matrix of weights).

2. Checking whether the stop criterion is met, i.e. whether
for the elements of vectors c and z
(z ¼ cbA

�1
B A ¼ cBG, G ¼ A�1

B A; cB – subvector of
vector c with the coefficients which correspond to
the basic variables; A ¼ ½AS

..

.
Au

..

.
Aw�, where Au and

Aw – coefficients matrices respectively for the variables
u and w) which correspond to each other, the relation-
ship ck � zk � 0 is satisfied.
If yes, then the solution thus found is optimal.
If no, the least element of vector d ¼ c� z shall be de-
termined. The determined element with index k, refers
to a column (subvector) of matrix A introduced to the
basic matrix AB and the variable which corresponds to
the subvector, which goes into the solution base xB.

3. Checking if in matrix G, elements of vector gð�;kÞ � 0.
Then, from among the quotient of the elements of vec-
tor h0 by positive elements of vector gð�;kÞ we choose the
least quotient, hoi

gð�;kÞ
¼ min

gk>0

h0i
gð�;kÞ

. Remove the variable for

which the criterion is satisfied from vector xB, and re-
move the subvector corresponding to the removed basic
variable from matrix AB.

4. Performing the calculations
h0 ¼ A�1

B PL
d ¼ c� z
z ¼ cBA

�1
B A ¼ cBG

The value of the function of target z0 ¼ cBh0 is deter-
mined.

5. Passing to step 2.

3 Covariance matrices

The solution of the iterative process is a basic vector xB
together with the values of vector h0 ¼ A�1

B PL corre-
sponding to those variables. In order to assess the accu-
racy of the thus obtained results, covariance matrices
should be determined for the unknown parameters of
the Cov(X)model, as well as for the vector of corrections
Cov(v). As vector xB may contain both unknown para-
meters of model Xj and corrections mi it is necessary to
introduce the matrix of transformations H to the calcula-
tions of the covariance matrix Cov(X). Matrix H is to
choose only the sought parameters of the model from
the vector of solutions xB. Let us therefore assume matrix
H in the following form

H ¼

quðX1Þ
qxB1

quðX1Þ
qxB2

; :::;
quðX1Þ
qxBn

:::::::::::::::::::::::::

quðXmÞ
qxB1

quðXm�
qxB2

; :::;
quðXmÞ
qxBn

2
66664

3
77775 ð3:1Þ

where Xj ¼ �XXj � �XXmþ1 and xBi – variables contained in
vector xB of the final solution.
It can be therefore written

X ¼ H A�1
B PL ð3:2Þ

Employing the principle of variance transfer, which is
known to the literature of the subject and is usually for-
mulated as follows

Cov ¼ DCðLÞDT ð3:3Þ
where: Cov – sought covariance matrix, D – matrix of
known coefficients, CL – known matrix of covariance
of measurement results.
Hence the covariance matrix of a vector of parameters
Cov(X) assumes the following form (with D ¼ H A�1

B P)

CovðXÞ ¼ D CðLÞDT ¼ ðH A�1
B PÞCðLÞðPðA�1

B ÞTHTÞ
ð3:4Þ

Taking into account that

CðLÞ ¼ m2
0P

�1 ð3:5Þ
where, m2

0 – estimator of coefficient of variance

CovðXÞ ¼ m2
0H A�1

B P P�1 PðA�1
B ÞTHT ð3:6Þ

The relationship (3.6) can also be written in the following
form

CovðXÞ ¼ m2
0QðXÞ ð3:7Þ

where

QðXÞ ¼ H A�1
B PðA�1

B ÞTHT ð3:8Þ
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is a matrix of co-factors (approximations of variance) of a
vector of parameters X.
Coefficient m2

0 can be determined from a well-known re-
lationship m2

0 ¼ vTPv=ðn� mÞ.
In order to determine the covariance matrix of a vector of
corrections v, the following relationship can be formu-
lated

V ¼ ASX� L ¼ ASH A�1
B PL� L ¼

�ðE� ASH A�1
B PÞL ð3:9Þ

where E ¼ diagð1; :::; 1Þ.
Hence, assuming that Cov ¼ DC(L)DT) the following re-
sults

CovðvÞ ¼ ðE� ASH A�1
B PÞCðLÞðE� ASH A�1

B PÞT
ð3:10Þ

where

D ¼ E� ASH A�1
B P ð3:11Þ

Having performed the calculations (with CðLÞ ¼ m2
0P

�1)
the covariance matrix of a vector of corrections is ob-
tained in the following form

CovðvÞ ¼ m2
0ðP�1 � ðA�1

B ÞTHTAT
S � ASH A�1

B þ
ASH A�1

B PðA�1
B ÞTHT AT

S Þ ð3:12Þ
or

CovðvÞ ¼ m2
0ðP�1 � ðA�1

B ÞTHTAT
S � ASH A�1

B þ
ASQðXÞAT

S Þ ð3:13Þ
where QðXÞ ¼ H A�1

B PðA�1
B ÞT HT.

Assuming that a cofactor matrix Q(v) is formulated fol-
lows

QðvÞ ¼ ðP�1 � ðA�1
B ÞTHTAT

S � ASH A�1
B þ ASQðXÞAT

S Þ
ð3:14Þ

The covariance matrix of a vector of corrections has the
following form

CovðvÞ ¼ m2
0QðvÞ ð3:15Þ

4 An example of practical application

In order to present the LAD method in practical terms, we
present a simulated example of a levelling network. The
analysed network is presented in Fig 1. The figure as-
sumes that RPI, RPII – points of reference, HA, HB – points
of determining altitudes, Dh – „measured overheight“. In
order to simplify the calculations it was assumed that the
network lies on a plane and points altitudes equal 0 (in any
units). A gross error is meant to denote the overheight
Dh3 ¼ 15.
The function of target can be formulated as follows:

Xm
j¼1

0Xj þ
Xn
i¼1

pijui þ wij ¼ min ! cxT ¼

½00...0...11111...11111�½HAHB
..
.
�HH3
..
.
u1u2u3u4u5

..

.
w1w2w3w4w5�T

c xT

with restrictions

HA � �HH3 � u1 þ w1 ¼ Dh1

�HA þ �HH3 � u2 þ 22 ¼ Dh2

�HB þ �HH3 � u3 þ w3 ¼ Dh3

�HB þ �HH3 � u4 þ w4 ¼ Dh4

HA � HB � u5þ w5 ¼ Dh5

where AT
S ¼ 1 �1 0 0 1

0 0 �1 �1 �1

� �T

The restrictions can also be presented in the following for-
mula

Fig. 1
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3
77775
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Generally, it can be written that Ax ¼ L. According to the principles of a simplex method, a basic solution is sought.
For further considerations let us assume a transformedmatrixA ¼ ½AB

..

.
AP�, in whichAB is a matrix of coefficients at the

basic variables xB, while AP is a matrix of coefficients of non-basic variables xP, ðx ¼ ½xB..
.
xP�TÞ.

Taking into account a matrix of weights P, the following formula can be written

½AB
..
.
AP�P

xB
. . .
xP

2
4

3
5 ¼

L
. . .
0

2
4

3
5

hence

ABPxBþ APPxP ¼ L ! xB ¼ A�1
B PðL� APPxPÞ

Assuming that xP ¼ 0, ðHA ¼ HB ¼ �HH3 ¼ u1 ¼ u2 ¼ u3 ¼ u4 ¼ u5 ¼ 0Þ
we have

xB ¼ h0 ¼ A�1
B PL;

Therefore (assuming that a matrix of weights P ¼ Diagð1; :::1Þ)
w1

w2

w3

w4

w5

2
66664

3
77775 ¼

1

1

1

1

1

2
66664

3
77775

0
BBBB@

1
CCCCA

�1
1

2

15

1

3

2
66664

3
77775 ¼

1

2

15

1

3

2
66664

3
77775

xB ¼ A�1
B L ¼ h0

For further calculations we assume the following (altered) form of matrix A

A ¼

1 ..
.

1 0..
. �1..

. �1

1 ..
. �1 0..

.
1..
. �1

1 ..
.

0 �1..
.

1..
. �1

1 ..
.

0 �1..
.

1..
. �1

�1..
.

1 �1..
.

0..
. �1

2
666666664

3
777777775
;

AB AP

Performing calculations in accordance with the algorithm presented above, the following solution has been achieved
after three iterations: �HHA ¼ 3, w2 ¼ 3, w3 ¼ 13, �HH ¼ 2, u4 ¼ 1.
Applying the notation introduced earlier ðXj ¼ �XXj � �XX3Þ, the unknown parameters can be determined, namely

HA ¼ �HHA � �HH3 ¼ 3� 2 ¼ 1

H
B
¼ �HHB � �HH3 ¼ 0� 2 ¼ �2

as well as the vector of corrections mi ¼ ui � wi (with ui ¼ 0 for mi � 0, and wi ¼ 0 for mi > 0)
mi ¼ 0 (u1 and w1 are not in the solution),
m2 ¼ �3 w2 ¼ 3 (u2 ¼ 0 to m2 is negative),
m3 ¼ �13 w3 ¼ 13 (u3 ¼ 0 to m2 is negative),
m4 ¼ 1 u4 ¼ 4 (u4 ¼ 0 to m4 is positive)
m5 ¼ 0 (u5 and w5 are not in the solution).
Based on the final results of adjustment, it can be noted that m3 ¼ �13. It is therefore highly probable that the obser-
vation contains a gross error.
The following results were obtained in III iteration

G ¼

1 �1 0

�1 1 1 0

0 1 1 0

0 1 �1

1 0 0

2
66664

3
77775

0
BBBB@

1
CCCCA

�1 1 �1 0..
.

1 �1..
.

0..
. �1

�1 1 1 0..
. �1 1..

.
0..
. �1

0 1 1 0..
.

0 0..
.

0..
. �1

0 1 �1..
.

0 �1..
.

1..
. �1

1 0 0..
.

1 �1..
.

0..
. �1

2
666666664

3
777777775

A�1
B A
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hence

G ¼

1 ..
.

1 �1..
.

0..
.

0 0 0 0 �1

1 ..
.

0 0..
.

0..
. �1 �1 0 0 0

1 ..
.

0 0..
.

0..
. �1 0 �1 0 1

1 ..
.

0 �1..
.

1..
.

1 0 0 0 �1

1..
.

0 0 ..
.

0..
.

1 0 0 1 �1

2
666666664

3
777777775

h0 ¼ A�1
B PL

h0 ¼

1 �1 0

�1 1 1 0

0 1 1 0

0 1 �1

1 0 0

2
66664

3
77775

0
BBBB@

1
CCCCA

�1
1

2

15

1

3

2
66664

3
77775 ¼

3

3

13

2

1

2
66664

3
77775

z ¼ cBG

cB ¼
½0 1 1 0 1�
# # # # #
HA w2 w3

�HH3 u4

z ¼ ½0 1 1 0 1..
.
0 0..

.
0..
.� 1 � 1 � 1 1 0�

d ¼ c� z

d ¼ ½½1 1 1 1 1 ..
.
0 0..

.
0..
.
1 1 1 1 1� � ½0 1 1 0 1..

.
0 0..

.
0..
. � 1 � 1 � 1 1 0�

d ¼ ½1 0 0 1 0..
.
0 0..

.
0..
.
2 2 2 0 1�

z0 ¼ cBh0 ¼ ½0 1 1 0 1�

3

3

13

2

1

2
66664

3
77775 ¼ 17

Subsequently, an analysis of accuracy is performed with the use of the relationships derived earlier.
Let us assume matrix AB, obtained from the final solution and equal

AB ¼

1 �1 0

�1 1 1 0

0 1 1 0

0 1 �1

1 0 0

2
66664

3
77775

In order to calculate a covariance matrixCovðXÞ ¼ m2
0QðXÞ of a vector of parameters (where matrixQ(X) is described

by the relationship (3.8)), in the analysed example, we can write

HA ¼ �HHA � �HH3

HB ¼ �HHB � �HH3

Hence;

H ¼
qHA

q�HHA

qHA

qw2

qHA

qw3

qHA

q�HH3

qHA

qu4

qHB

q�HHA

qHB

qw2

qHB

qw3

qHB

q�HH3

qHB

qu4

2
6664

3
7775 ¼ 1 0 0 �1 0

0 0 0 �1 0

� �
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Therefore;

CovðXÞ ¼ m2
0

1 0 0 �1 0

0 0 0 �1 0

� � 1 0 �1 1 1

0 2 1 �1 �1

�1 1 3 �2 �2

1 �1 �2 2 2

1 �1 �2 2 3

2
66664

3
77775

1 0

0 0

0 0

�1 �1

0 0

2
66664

3
77775

Hence;

CovðXÞ ¼ m2
0

1 1

1 2

� �

A covariance matrix of a vector of corrections described by the relationship CovðvÞ ¼ m2
0QðvÞ, for QðvÞ ¼

ðP�1 � ðA�1
B ÞTHTAT

S � A H A�1
B þ ASQðXÞAT

S Þ will have the following form

CovðvÞ ¼ m2
0

0 0 0 0 0

0 2 1 1 0

0 1 3 2 0

0 1 2 3 0

0 0 0 0 0

2
66664

3
77775

In covariance matrix Cov (v) there are no mean errors of corrections m1 and m5. The mean of both corrections can be
determined following (on the basis of fig. 1)

Dh1 þ m1 ¼ HA � RPI m1 ¼ HA � RPI � Dh1
hence

Dh5 þ m5 ¼ HA � HB m5 ¼ HA � HB � Dh5

Hence (assuming the error free points of reference)

m2
m1
¼ qm1

qHA

� �2

m2
HA

þ qm1
qDh1

� �2

m2
Dh1

¼ 12 þ 12 ¼ 2; mm1 ¼
ffiffiffi
2

p
¼ 1,4

m2
m5
¼ qm5

qHA

� �2

m2
HA

þ qm5
qHB

� �2

m2
HB

þ qm1
qDh5

� �2

m2
Dh5

¼ 12 þ 22 þ 12 ¼ 6; mm5 ¼
ffiffiffi
6

p
¼ 2,4

5 Summary

This paper presents the problem of robust adjustment with
an analysis of results accuracy by the method of the least
absolute deviations (LAD).
The forms of covariance matrices of a vector of para-
meters are presented as well as corrections, which provide
an assessment of accuracy of the final determinations.
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