
1 Mathematical Modeling

We assume two independent variables X, Y (forecasting
factors) describing pressure and temperature, which influ-
ence the dam deformation Z. This restriction concerning
the use of only two variables is made related to the further
model applications to the two-dimensional data set that is
given in YUANZHONG and LITAO (2005). Obviously, our
models can be simply generalised for more independent
variables. We consider here four following models:

Z1ðkÞ ¼ C þ
Xp
i¼1

aiXðk � iÞ þ
Xp
i¼1

biYðk � iÞ þ e ð1Þ

Z2ðkÞ¼C � Z2ðk � 1Þþ
Xp
i¼1

aiXðk � iÞþ
Xp
i¼1

biYðk � iÞ þ e

Z3ðkÞ ¼ C þ
Xp
i¼0

aiXðk � iÞ þ
Xp
i¼0

biYðk � iÞ þ e

Z4ðkÞ¼C � Z4ðk � 1Þþ
Xp
i¼0

aiXðk � iÞþ
Xp
i¼0

biYðk � iÞ þ e

The random variable e � Nð0; r2Þ is normally distributed
with mean zero and (unknown) variance r2. Parameter p
describes the so called “depth” of the recursion of AR-
models (it corresponds to the number of months which
should be taken into consideration in our application).
With help of methods of the adjustment theory we can es-
timate the unknown coefficients C and ai; bi,
i ¼ 0ðor 1Þ::p using a sufficient number M of equations
corresponding to the given measurements
xðjÞ; yðjÞ; zðjÞ; jjj ¼ M. M is the number of months,
when the measurements are sampled. This number M
should satisfy M � 2pþ 1 for models 1 and 2,
M � 2pþ 3 for models 3 and 4. For example, we have
for model 1:

z1ðpþ 1Þ ¼ C þ
Xp
i¼1

aixðpþ 1� iÞ þ
Xp
i¼1

biyðpþ 1� iÞ þ e

z1ðpþ 2Þ ¼C þ
Xp
i¼1

aixðpþ 2� iÞ þ
Xp
i¼1

biyðpþ 2� iÞ þ e ð2Þ

…

z1ðpþMÞ ¼ C þ
Xp
i¼1

aixðpþM � iÞ þ
Xp
i¼1

biyðpþM � iÞ þ e
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After setting these equations to matrix form like (2’)

�zz ¼ A � �uuþ �ee;

�zzT¼ ½zðpþ 1Þ; :::; zðpþMÞ�; �uuT¼½C; a1; :::; ap; b1; :::; bp�;

Aðk; 1Þ ¼ 1; k ¼ 1::M ð20Þ

Aðk; lþ 1Þ ¼ xðpþ k � lÞ; k ¼ 1::M; l ¼ 1:::p

Aðk; lþ pþ 1Þ ¼ yðpþ k � lÞ; k ¼ 1::M; l ¼ 1::p

we get the well-known solution of (2’) corresponding to:

�uu ¼ ðATAÞ�1
AT�zz ð3Þ

The accuracy of the model fitting is obtained by:

r̂r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðA�uu� �zzÞTðA�uu� �zzÞ

M � 2p� 1

s
ð4Þ

The statistical goodness-of-fit can be proved by the em-
pirical mean and correlation coefficient between real mea-
surements and their forecasted values, which can be cal-
culated using the proposed mathematical models. It
should be expected, that:

EðeÞ � êe ¼ �zz� A�uu � 0 ð5Þ

q̂q ¼ qðA�uu;�zzÞ � 1

Models 2, 3, 4 can be analogously handled. The value r̂r2

from (4) can be used as an estimator for the unknown var-
iance r2 of e � Nð0; r2Þ and applied for forecasting dis-
cussed below.

2 Case study: Monitoring movement and
deformation of a gangue dam (a gold mine in
Shandong Province, Chine)

Here, we use the data set from Table 1 in YUANZHONG and
LITAO (2005), p. 91. The monthly dam deformations are
presented in Figure 1.
At first, we discuss modeling and forecasting the deforma-
tion for the last four months (K ¼ 30, 31, 32 and 33 from
Table 1 in YUANZHONG and LITAO (2005), p. 91) based on
measurements obtained during months 1–29, see Figure 1
(left).
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Real measurements and their forecasted values corre-
sponding to the approach described in YUANZHONG and LI-

TAO (2005) are presented in Table 1.
Remark 1: In this case the sum of absolute differences
between the real and forecasted deformations is d ¼ 45:3.
We apply models 1–4 from (1) for different values of para-
meter p and obtain the coefficients of the corresponding
multiple linear regression given in Tables 2–5. Figure 2
shows a comparison between real measurements and their
estimated values.
The forecasting is modelled as follows. At first, we use a
multiple regression model for the trend prediction. At sec-
ond, we simulate 100 times a normally distributed para-
meter e with mean zero and variance r̂r2 and use the ob-
tained maximal absolute values for calculating the limits
of the forecasting interval. Of course, one can also use the
1:5 � r-rule for these limits.
In Table 6 the forecasted values and the sum of their ab-
solute differences between real measurements (see Ta-
ble 1) and their forecasted values are presented.

3 Outlook and discussion

It can be seen from Tables 1 and 6, that a long-time fore-
casting is mostly useless. This fact is well-known in ap-
proximation theory. It is more meaningful to make fore-
casting only for the single month 30 based on last 29
months, than for four future months 30–33.
Further, if additional information about pressure, tempera-
ture and deformation in the month 30 is still given, one
should fit a new multiple regression model based on
the months 1 –30, and then forecast the value of deforma-
tion in the month 31 and so on. The choice of a multiple
regression model 1–4 from (1) should be strongly depend-
ing on the expert knowledge about the “true nature” of a
dam deformation process.
It is clear, that other regression models are possible. For
example, one can use a generalized model like (6):

Z5ðkÞ ¼ C þ
Xp
i¼0

ai
Xðk � iÞ

Yðk � iÞ þ eps
þ
Xp
i¼0

biYðk � iÞ þ e ð6Þ

The parameter eps helps to correct zeros of temperatures.
We use eps ¼ 9 here because this value leads to the
minimum of d, c.f. Figure 4. In this case the following
results are obtained, c.f. Table 6:
q̂q ¼ 0:72, êe ¼ �0:028 mm� 10�9 and d ¼ 25:94, c.f.
Remark 1. The parameter p ¼ 4 leads to r̂r ¼ 14:47.
The forecasted values for the months K ¼ 30� 33 are:
39.70 � 21.71, 44.66 � 21.71, 50.49 � 21.71,
64.59 � 21.71.
Figure 4 shows the values of d depending on the choice of
eps in (6). We can see, that the optimal value corresponds
to approx. eps ¼ 9. Figure 5 presents the result of fore-
casting for the month 30 using this model, c.f. Figure 3.
Finally, the “point-exactly” forecasting can never exist,
because of unknown, future process oscilations caused
by the random parameter e.
Graphically, interval-related, short-time forecasting can
be presented as in Figure 3. The mathematical software
MATLAB is used for numeric implementation and visua-
lisation.

Table 1: Real measurements and their forecasting for the
last four months (cited from YUANZHONG and LITAO (2005),
p.91, 92)

Month number, K 30 31 31 33

Deformation, real, mm 38 54 50 79

Deformation, forecasted, mm 45.3 48.0 52.6 49.6

Fig. 1: The monthly deformations (left)
and deformations related to pressure
and temperature (right)

Fig. 2: The real deformations (solid line) and their forecast-
ing values (dotted line) by model 1 from (1) with p ¼ 7
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Table 2: The coefficients of the multiple linear regression and some goodness-of-fit characteristics c.f. (4), (5) for the model 1
from (1) based on measurements from the first 29 months

p ¼ 2 p ¼ 3 p ¼ 4 p ¼ 5 p ¼ 6 p ¼ 7

C ¼ 108:31 C ¼ 48:25 C ¼ 81:65 C ¼ 17:81 C ¼ 143:85 C ¼ 132:98

a1 ¼ 1:75 a1 ¼ 0:62 a1 ¼ 0:19 a1 ¼ �0:64 a1 ¼ �1:17 a1 ¼ �0:18

b1 ¼ �0:92 b1 ¼ �0:95 b1 ¼ �0:90 b1 ¼ �0:97 b1 ¼ �0:68 b1 ¼ �0:69

a2 ¼ �3:77 a2 ¼ �3:61 a2 ¼ �3:31 a2 ¼ �2:0 a2 ¼ 0:5 a2 ¼ 2:35

b2 ¼ �1:18 b2 ¼ �1:49 b2 ¼ �1:46 b2 ¼ �1:6 b2 ¼ �1:45 b2 ¼ �1:4

a3 ¼ 3:77 a3 ¼ 4:01 a3 ¼ 3:9 a3 ¼ 0:72 a3 ¼ 0:36

b3 ¼ 0:09 b3 ¼ 0:21 b3 ¼ 0:21 b3 ¼ 0:48 b3 ¼ 0:31

a4 ¼ �1:68 a4 ¼ �2:47 a4 ¼ �2:21 a4 ¼ �2:43

b4 ¼ 0:01 b4 ¼ �0:26 b4 ¼ �0:5 b4 ¼ �0:63

a5 ¼ 3:51 a5 ¼ 5:17 a5 ¼ 5:25

b5 ¼ �0:19 b5 ¼ 0:52 b5 ¼ 0:62

a6 ¼ �6:86 a6 ¼ �8:00

b6 ¼ 0:23 b6 ¼ 0:34

a7 ¼ �0:9

b7 ¼ 0:49

r̂r ¼ 12:03 12.23 13.11 13.47 12.88 13.94

êe ¼ �0:29 mm� 10�9 0.14 0.25 0.02 � 0.29 � 0.32

q̂q ¼ 0:70 0.74 0.74 0.78 0.85 0.88

Table 3: The first coefficient of the multiple linear regression and some goodness-of-fit characteristics c.f. (4), (5) for the
model 2 from (1) based on measurements from the first 29 months

p ¼ 2 p ¼ 3 p ¼ 4 p ¼ 5 p ¼ 6 p ¼ 7

C ¼ �0:03 C ¼ �0:07 C ¼ �0:06 C ¼ �0:1 C ¼ 0:14 C ¼ 0:01

r̂r ¼ 12:69 12.32 13.34 13.42 13.40 14.37

êe ¼ �3:44 mm � 1.32 � 1.35 � 0.31 � 1.16 � 0.63

q̂q ¼ 0:66 0.73 0.73 0.79 0.83 0.87

Table 4: The first coefficient of the multiple linear regression and some goodness-of-fit characteristics c.f. (4),(5) for the
model 3 from (1) based only on measurements from the first 29 months

p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4 p ¼ 5 p ¼ 6

C ¼ 139:72 C ¼ 169:64 C ¼ 141:43 C ¼ 113:46 C ¼ 120:38 C ¼ 232:08

r̂r ¼ 10:59 11.11 11.69 12.16 12.56 12.47

êe ¼ �0:09 mm� 10�9 0.23 0.03 0.32 0.01 0.54

q̂q ¼ 0:77 0.78 0.79 0.81 0.85 0.89

Table 5: The first coefficient of the multiple linear regression and some goodness-of-fit characteristics c.f. (4), (5) for the
model 4 from (1) based on measurements from the first 29 months

p ¼ 1 p ¼ 2 p ¼ 3 p ¼ 4 p ¼ 5 p ¼ 6

C ¼ 0:18 C ¼ 0:19 C ¼ 0:14 C ¼ 0:23 C ¼ 0:24 C ¼ 0:26

r̂r ¼ 11:75 12.55 12.39 12.40 12.79 13.93

êe ¼ �4:36 mm � 4.11 � 2.16 � 1.37 � 1.28 � 1.72

q̂q ¼ 0:71 0.70 0.76 0.81 0.84 0.86
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Table 6: Forecasted intervals and the sum of their absolute differences d between real measurements and centres of
forecasting intervals produced by four models from (1)

Modell 1

K ¼ 30 K ¼ 31 K ¼ 32 K ¼ 33 d

p ¼ 2 39.73 � 18.05 49.76 � 18.05 61.07 � 18.05 45.55 � 18.05 50.48

p ¼ 3 35.02 � 18.35 54.89 � 18.35 71.79 � 18.35 49.24 � 18.35 55.42

p ¼ 4 33.35 � 19.67 56.23 � 19.67 70.61 � 19.67 45.32 � 19.67 61.16

p ¼ 5 25.64 � 20.21 61.08 � 20.21 69.62 � 20.21 45.13 � 20.21 67.04

p ¼ 6 31.52 � 19.32 64.34 � 19.32 52.07 � 19.32 52.55 � 19.32 51.21

p ¼ 7 33.45 � 29.1 65.95 � 29.1 50.28 � 29.1 54.82 � 29.1 40.97

Modell 2

K ¼ 30 K ¼ 31 K ¼ 32 K ¼ 33 d

p ¼ 2 48.75 � 19.04 60.13 � 19.04 65.87 � 19.04 45.40 � 19.04 66.35

p ¼ 3 39.29 � 18.48 62.12 � 18.48 79.33 � 18.48 53.39 � 18.48 64.35

p ¼ 4 39.32 � 20.02 61.55 � 20.02 78.95 � 20.02 53.08 � 20.02 63.74

p ¼ 5 35.17 � 20.13 68.48 � 20.13 75.39 � 20.13 52.95 � 20.13 68.76

p ¼ 6 27.91 � 20.1 58.57 � 20.1 54.05 � 20.1 45.25 � 20.1 52.45

p ¼ 7 37.67 � 21.56 71.96 � 21.56 52.95 � 21.56 60.04 � 21.56 40.20

Modell 3

K ¼ 30 K ¼ 31 K ¼ 32 K ¼ 33 d

p ¼ 1 35.47 � 15.89 31.67 � 15.89 60.87 � 15.89 62.02 � 15.89 52.71

p ¼ 2 36.61 � 16.67 31.49 � 16.67 59.75 � 16.67 56.81 � 16.67 55.83

p ¼ 3 39.64 � 17.54 32.73 � 17.54 58.71 � 17.54 60.73 � 17.54 49.89

p ¼ 4 39.32 � 18.24 34.27 � 18.24 55.69 � 18.24 61.45 � 18.24 44.29

p ¼ 5 47.14 � 18.84 33.25 � 18.84 59.94 � 18.84 67.18 � 18.84 51.66

p ¼ 6 47.41 � 22.05 35.12 � 22.05 57.29 � 22.05 54.78 � 22.05 59.80

Modell 4

K ¼ 30 K ¼ 31 K ¼ 32 K ¼ 33 d

p ¼ 1 28.89 � 17.63 31.19 � 17.63 61.90 � 17.63 54.58 � 17.63 68.24

p ¼ 2 28.86 � 18.83 29.95 � 18.83 63.11 � 18.83 54.73 � 18.83 70.57

p ¼ 3 36.28 � 18.59 29.64 � 18.59 59.79 � 18.59 58.52 � 18.59 56.35

p ¼ 4 30.44 � 18.6 27.38 � 18.6 50.35 � 18.6 51.86 � 18.6 61.67

p ¼ 5 38.51 � 19.19 25.88 � 19.19 54.90 � 19.19 57.13 � 19.19 55.40

p ¼ 6 37.68 � 20.9 27.20 � 20.9 55.13 � 20.9 49.34 � 20.9 61.90
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Abstract

The movement and deformation of surface can be
considered as a random and dynamic time-
varying process. Methods of multiple regression
analysis can help to recognize the linear structure
of such processes and to make the forecast.
Qualified monitoring and forecasting the surface
movement and deformation can sometimes pre-
vent natural disasters.

Related to this problem, a two-step-modeling is
proposed in the paper YUANZHONG and LITAO

(2005). Here, we discuss some alternative models,
which can be applied as well to the trend analysis
of the dam deformation as to its short-time
forecasting. These models are mainly based on
methods of the adjusment theory, see for example
WOLF (1979). Some ideas come from applied re-
gression analysis, see DRAPER and SMITH (1998).

This paper presents a completion to the approach
proposed in YUANZHONG and LITAO (2005). For
this reason, a case study of deformation analysis
and short-time forecasting is also related to a
gangue dam (a gold mine in Shandong Province,
Chine).

Fig. 3: Graphical presentation of the interval-related, short-
time forecasting (dotted lines, arrows) by model 1 from (1)
with p ¼ 7 for the dam deformation in the month 30 based
on measurements from the months 1–29. In this case
q̂q ¼ 0:88, êe ¼ �0:32� 10�9 and r̂r ¼ 13:94 are obtained.
The real deformation in the month 30 is drawn as the under
star. The centre of its forecasting interval is drawn as the
upper star

Fig. 4: Dependence of values d on the choice of eps for the
multiple regression model in (6)

Fig. 5: Graphical presentation of the interval-related, short-
time forecasting (dotted lines, arrows) by the model given in
(6). The real deformation in the month 30 is drawn as the
under star. The centre of its forecasting interval is drawn
as the upper star
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