
gis.Science 3 (2018) 85-100

gis.Science 3/2018 I 85

Technical University of Munich

SPATIO-SEMANTIC COMPARISON OF LARGE 3D CITY MODELS
IN CITYGML USING A GRAPH DATABASE
Son H. Nguyen, Zhihang Yao, Thomas H. Kolbe

Abstract: The OGC open data model for the storage and exchange of virtual 3D city models City Geography Markup Language
(CityGML) allows various syntactic ways to define a 3D city object. This on the one hand offers a high degree of flexibility in terms
of creating new content-rich city models, but on the other hand complicates the automatic maintenance process of existing large
CityGML documents. One often-stated example of such complications is the difficulty observed while attempting to detect possible
thematic, geometrical as well as semantic deviations between two CityGML datasets of the same city. Existing studies have indi-
cated that such problems can be solved using graph representations of CityGML documents. However, the question as how this
concept can be realized still remains. Thus, this research provides an in-depth solution to this question in three main steps: (1) map-
ping two arbitrarily large-sized CityGML datasets efficiently onto graphs using a graph database (such as Neo4j), (2) matching
mapped graphs based on concrete algorithms and attaching various types of EditOperations designed for updating the older City
GML dataset, and (3) executing attached EditOperations by converting them to transactions conforming to the Web Feature Service
(WFS), the standard interface for updating geographical features across the web. The functionality and performance of the devel-
oped software is examined and demonstrated using the entire 3D city model of Berlin.

Keywords: 3D City Models, CityGML, spatio-semantic comparison, change detection, graph database, Neo4j, Web Feature Service

RÄUMLICH-SEMANTISCHER VERGLEICH GROSSER 3D-STADTMODELLE IN
CITYGML UNTER VERWENDUNG EINER GRAPH-DATENBANK
Zusammenfassung: Der OGC-Standard zur Speicherung und zum Austausch virtueller 3D-Stadt- und Landschaftsmodelle City Geo-
graphy Markup Language (CityGML) erlaubt zahlreiche syntaktische Varianten, wie 3D-Stadtobjekte in CityGML-Dokumenten reprä-
sentiert werden können. Das bietet eine hohe Flexibilität beim Erzeugen von Stadtmodellen mit reichhaltigem Informationsgehalt,
erschwert jedoch den automatisierten Wartungsprozess existierender großer CityGML-Dokumente. Ein prominentes, öfter vorkom-
mendes Beispiel sind Schwierigkeiten beim Erkennen möglicher thematischer, geometrischer sowie semantischer Änderungen zwi-
schen zwei CityGML-Datensätzen einer Stadt. Erste Arbeiten schlagen dazu vor, CityGML-Dokumente während ihres Vergleichs als
Graphen darzustellen, aber es bleibt zumeist offen, wie dieses Konzept realisiert und effizient implementiert werden kann. Die hier
vorgestellte Forschungsarbeit beantwortet diese Frage ausführlich in drei Hauptschritten: (1) das Abbilden zweier beliebig großer
CityGML-Datensätze auf Graphen unter Verwendung einer Graphdatenbank (z. B. Neo4j), (2) das Vergleichen der abgebildeten
Graphen und Erzeugen der verschiedenen Edit-Operationen, welche zum Aktualisieren des alten CityGML-Datensatzes benötigt
werden, und (3) das Ausführen der eingefügten Edit-Operationen, indem sie zu Transaktionen der zur Aktualisierung der geographi-
schen Features-Standardschnittstelle Web Feature Service (WFS) umgewandelt werden. Die Funktion und Performanz der entwickel-
ten Software wird am Beispiel des kompletten 3D-Stadtmodells von Berlin untersucht und gezeigt.

Schlüsselwörter: 3D-Stadtmodelle, CityGML, räumlich-semantischer Vergleich, Veränderungsdetektion, Graphdatenbank, Neo4j,
Web Feature Service

Autor(en)

M. Sc. Son H. Nguyen

M. Sc. Zhihang Yao

Univ.-Prof. Dr. rer. nat. Thomas H. Kolbe

Technical University of Munich

Chair of Geoinformatics

Arcisstraße 21

D-80333 München

E:	 son.nguyen@tum.de

	 zhihang.yao@tum.de

	 thomas.kolbe@tum.de

SPATIO-SEMANTIC COMPARISON OF LARGE 3D CITY MODELS IN CITYGML USING A GRAPH DATABASE

SPATIO-SEMANTIC COMPARISON OF LARGE 3D CITY MODELS IN CITYGML USING A GRAPH DATABASE

gis.Science 3/201886 I

Figure 1: An example of chronological changes (e. g. a new building has been constructed) between two

models of the same city recorded at different timestamps (Source: The City of Berlin)

1 INTRODUCTION
As an official OGC standard for the stor-
age and exchange of virtual 3D city mod-
els, CityGML is capable of describing
most common 3D city objects (such as
buildings, bridges, tunnels, vegetation,
traffic, etc.) and has been employed in a
wide range of different areas, from urban
planning and facility management to envi-
ronmental simulations and thematic inquir-
ies. One of the main factors contributing to
this success is that, unlike conventional
modelling tools that can only store the 3D
geometry and graphical appearances of
3D urban objects for pure visualization pur-
poses, CityGML also describes them in
five different levels of details (LODs 0-4)
and includes their semantic as well as the-
matic properties (such as relationships be-
tween objects and object attributes respec-
tively), since “one of the most important de-
sign principles for CityGML is the coherent
modelling of semantics and geometrical/
topological properties” (Gröger et al.
2012). Moreover, CityGML allows multi-
ple geometrical and syntactic ways to de-
fine a 3D city object offering a high de-
gree of flexibility. For instance, two geo-
metrically equivalent wall surfaces, on the
one hand, can be represented by a single
polygon or a set of smaller polygons, and
on the other hand, can be defined in differ-
ent syntactic ways, e. g. as in-line objects,
or as references referring to other existing
walls of adjacent buildings via the XML
Linking Language (XLink). This flexibility is
“especially important with respect to the
cost-effective sustainable maintenance of
3D city models” (Gröger et al. 2012), as
it ensures CityGML documents can be
shared over various applications that make
use of the model’s common semantic infor-
mation.

However, the facts that (1) geometrical
and syntactic ambiguities may exist in City
GML datasets, (2) CityGML elements be-
long to a complex hierarchical structure,
and (3) CityGML documents can become
very large in size have proved to be major
challenges to maintain sustainable 3D city
models. One often-stated example is the
difficulty observed while handling undocu-
mented collaborative and chronological
changes of an existing city model (see Fig-
ure 1). Such changes are inevitable, since
as cities evolve over time, so does the
need to adjust their models accordingly

(Navratil et al. 2010). Furthermore, be-
cause the current state of CityGML does
not support version control for tracking
changes, multiple model documents of the
same city may accumulate over time. As a
result, during the maintenance phase, old
city datasets are often overwritten com-
pletely with newer ones, which not only
causes a large number of unnecessary
transactions, but also loses extended the-
matic data that was assigned to the older
version of the 3D model during the given
time period.

Therefore, instead of replacing older re-
cords, an ideal solution should first com-
pare the models, and then attach edit op-
erations on the fly to detected deviation
sources. Such edit operations represent
real changes between datasets and can
be utilized to commit transactions in the da-
tabase. This way, older datasets can both
be updated and still retain their respective
core structure, including their syntactic
structure and internal object references.
This plays a key role in enabling a version
control system for collaborative work in
modelling and storing digital 3D city mod-
els (Chaturvedi et al. 2015). Moreover,
the number of transactions required for
e. g. a WFS-enabled database is also re-
duced significantly, since only real chang-
es are committed.

In order to achieve this, considering the
facts that CityGML elements belong to a
graph-like structure and thus both geometri-
cal and semantic ambiguities can theoreti-
cally be disambiguated using a graph, this
research addresses the above-mentioned
major challenges and proposes an ap-
proach to detect spatio-semantic changes
in arbitrarily large-sized CityGML datasets
utilizing a graph database. This approach

can be applied to almost all available pop-
ular graph databases. The graph data-
base Neo4j is employed in this research,
as it provides relatively comprehensive API
documentation. In addition, its community
version is open-source and can be em-
ployed free of charge. Basic support for
spatial data representation and indexing is
also available using the plug-in Neo4j
Spatial.

Please note that this article is a substan-
tially extended version of Nguyen et al.
(2017).

2 RELATED WORK
Existing conventional diff tools, such as the
Hunt-McIlroy algorithm (Hunt & McIlroy
1976), can only detect changes in pure
texts and is therefore incapable of handling
highly structured data models like City
GML. Bakillah et al. (2009) proposed a
conceptual basis for a semantic similarity
model (Sim-Net) for ad hoc network based
on the multi-view paradigm. Olteanu et al.
(2006) addressed the automatic matching
of imperfect geospatial data during data-
base integration. However, since both of
these researches mainly focused on either
the semantic or geometrical aspect of city
objects, they are not fully applicable to City
GML, which provides an integrated view
of both aspects.

Later, Redweik & Becker (2015) pre-
sented a concept for detecting semantic
and geometrical changes in CityGML
documents. Since CityGML is an applica-
tion schema of XML, which is a tree data
structure, by assuming that CityGML in-
stances can also be represented as trees,
they extended the algorithm “X-Diff”
(Wang et al. 2003) that considers tree
equivalence as isomorphism. However, in

gis.Science 3 (2018) 85-100

gis.Science 3/2018 I 87

contrast to XML, CityGML is not a tree but
a graph data structure by definition, as it
may contain cycles and nodes linked by
multiple parents (e. g. due to XLinks). There-
fore, this approach is generally not expres-
sive enough considering CityGML’s graph
data structure. Moreover, the methods pro-
posed by Redweik & Becker (2015) are
not yet evaluated against massive input
datasets.

Falkowski & Ebert (2009) introduced a
graph-based schema for integrated models
of urban data encoded in CityGML using
the TGraph technology. Their approach
shows how geometric, topological, seman-
tic and appearance information can be
stored, managed and processed in one in-
tegrated graph model and thus “forms the
basis for the application of efficient graph-
matching algorithms” in the context of ob-
ject-recognition. Later, Agoub et al. (2016)
addressed some of the biggest limitations
of storing and managing object-oriented
OGC data models (e. g. CityGML) inside
a spatial database, such as most Relational
Database Management Systems (RDBMS)
are rather suitable to “flat data structure”
and “mapping object-oriented data models
into compact relational schemas without
losing information is a challenging task”.
They then introduced a lightweight map-
ping approach that supports on-the-fly map-
ping and storage for various OGC stand-
ards (i. e. SensorML, CityGML, etc.) into
the graph database Neo4j and Aran-
goDB. Both concepts provided by Falkows-
ki & Ebert (2009) and Agoub et al. (2016)
are promising as they show the potential of
using graphs to represent highly complex
hierarchical data structures. However, the
introduced methods are rather a proof of
concept as they do not cover in details
how complex CityGML objects with their
inheritance information and references (like

XLinks) can be fully mapped and compared
using graphs. Their implementations were
also not designed to process massive input
datasets.

To deal with large input datasets, it is of
great advantage to efficiently preselect po-
tential matching candidates based on their
geometrical/topological properties. Ob-
jects’ topologically relative allocations can
be expressed by the “4” or “9-intersection
model” (“4-IM” or “9-IM”) (Egenhofer &
Franzosa 1991, Egenhofer & Herring
1991). In addition, an object can be local-
ized by recursively dividing its parent

graph into quadtrees (2D) or octrees (3D)
and colouring their interior as well as exte-
rior (Berg et al. 2008). Alternatively, an R-
tree can be applied to spatial objects
grouped in regions based on their topolog-
ical properties (Guttman 1984). Since R-
trees are balanced, their query response
time in logarithmic time complexity
O(logMn) is particularly efficient in large da-
tabases, where M is the maximum number
of entries allowed per internal node and n
is the number of nodes in the tree.

3 �MAPPING 3D CITY MODELS ONTO
A GRAPH DATABASE

Figure 2 shows the overall workflow, which
is divided into three main steps: (1) map-
ping two arbitrarily large-sized CityGML
datasets efficiently onto graphs, (2) match-
ing mapped graphs based on concrete al-
gorithms and attaching various types of Ed­
itOperations designed for updating the old-
er CityGML dataset, and (3) transforming
attached EditOperations to transactions
conforming to the Web Feature Service
(WFS). The graph database Neo4j is em-
ployed throughout the implementation. In

Figure 2: An overview of three major steps mapping, matching and updating of 3D city models using a

graph database

Figure 3: An overview of the mapping process. In this example, a building and its boundary surfaces,

each contained in a chunk held in main memory, are converted to Java objects first using the library city­

gml4j (step 1). In step 2, these Java objects are mapped onto graphs correspondingly using the Neo4j

Java Core API and self-developed algorithms. Finally, in step 3, mapped graphs are connected to each

other using XLinks to form a unique and fully connected graph representation of the input building.

SPATIO-SEMANTIC COMPARISON OF LARGE 3D CITY MODELS IN CITYGML USING A GRAPH DATABASE

gis.Science 3/201888 I

Neo4j, each city object is stored as a
graph node, while the relationships be-
tween these objects are represented as
edges between nodes. In other words,
nodes are connected directly to each other.
This is particularly useful in data models
that have a complex and multi-level deep
hierarchical structure like CityGML. In this
chapter, the mapping of city objects onto
Neo4j graphs shall be explained in sever-
al four smaller steps:
1.	 Reading CityGML datasets and con-

verting features to Java objects;
2.	 Mapping Java objects onto graphs;
3.	 Connecting mapped graphs using

XLinks;
4.	 Calculate minimum bounding boxes of

buildings.
An overview of the first three steps can be
found in Figure 3. Step 4 solely serves as
a preparation for the matching process.

3.1 �READING CITYGML DATASETS
IN JAVA

CityGML documents can be processed
with the help of various XML parsing APIs in
Java such as the Document Object Model
(DOM), Java Architecture for XML Binding
(JAXB), Simple API for XML (SAX) or Stream-
ing API for XML (StAX). Each API comes
with their own advantages and disadvan-
tages depending on the application do-
main. Considering the fact that CityGML
datasets have highly complex hierarchical
structure and can grow quickly in size, the
library citygml4j is employed. It utilizes a
combination of JAXB and SAX (Nagel
2017), which allows partial unmarshalling
(or deserialization) of CityGML elements
into Java objects with efficient memory con-
sumption (see Figure 4). This is achieved
by dividing the input datasets into smaller
chunks (or pieces), each of which is a fea-
ture such as boundary surface or a top-lev-

el feature such as building (see Figure 3,
Step 1). Moreover, this approach provides
an object-oriented view of read CityGML
data, which facilitates the transformation of
unmarshalled Java objects to graph entities
in the next step.

3.2 �CONVERTING JAVA OBJECTS
TO GRAPH ENTITIES

Java objects unmarshalled by the library city
gml4j in the previous step are now trans-
formed to corresponding graph entities in
Neo4j using the Neo4j Java Core API (see
Figure 3, step 2). Conceptually however,
two major challenges arise. Firstly, unmar
shalled Java instances belong to a complex
and multi-level deep class hierarchy de-
fined by the XML schema of CityGML. This
poses the difficulty in designing suitable
graph structures that are capable of not
only representing different instances of the
same class efficiently, but also handling
polymorphism correctly, where an instance
of a superclass can be replaced by those
of its subclasses. For instance, the aggre
gation boundedBy in the class Abstract­
Building requires an AbstractBoundarySur­
face object, which can be a RoofSurface,
WallSurface, GroundSurface, etc. Sec-
ondly, Neo4j is a value-based graph data-
base, which means that no explicit schema
modelling (incl. inheritance relationships) is
possible. As a result, mapping Java objects
onto graphs without losing any informa

tion, particularly their hierarchical inherit-
ance relations, is difficult.

To resolve these challenges, a new ap-
proach capable of creating graph repre-
sentations of given Java objects using their
hierarchical information is proposed (see
Algorithm 1). The key concept is the use of
a central expandable container node,
where all (i. e. own and inherited) attributes
and references of the respective Java ob-
ject can be appended successively for
each superclass. Namely, the mapping

Figure 4: The JAXB binding process (Adapted from

Oracle Corporation 2015)

Figure 5: An example of a graph representing a Building object. Rounded rectangles represent nodes.

Node properties are displayed below the node labels in rectangles. The colours indicate the originating

classes, in which nodes and properties are defined. Relationships are shown as (directed) arrows. Sub­

graphs on the right-hand side are graph representations of complex Java object attributes of the current

building. The container BUILDING node is expanded (i. e. gains new properties and subgraphs) succes­

sively for each superclass in the class hierarchy.

Figure 6: Explicit connections between features

(blue circles) and their parent (green circle) are sev­

ered during the splitting process using citygml4j in

step 1. To enable subsequent reconstruction of such

lost connections, hrefs or XLinks (yellow circles) con­

taining the IDs (orange circles) of split features are

automatically generated and attached to the affect­

ed parent element.

gis.Science 3 (2018) 85-100

gis.Science 3/2018 I 89

process starts with an empty container
node filled with the contents defined in the
lowermost Java class in the class hierarchy.
Then, this container is successively expand-
ed with the contents of each superclass
while moving up the class hierarchy.

The structure correspondence between
Java objects and their graph representa-
tions assigned by Algorithm 1 are listed in
Box 1.

An illustration of a graph representation
of a building is shown in Figure 5.

The advantages of this approach are:
XX Efficient and sustainable implementa-
tion;

XX 	Compact but expressive resulting
graphs;

XX 	Minimum to zero information loss while
mapping.

3.3 �CONNECTING MAPPED CITY
OBJECTS USING XLINKS

XLink is a simple yet practical means to ref-
erencing or reusing existing elements with-
out having to define them “in-line” repeat-
edly and thus essentially reduces redundan-
cies in XML documents (Bray et al. 2008,
DeRose et al. 2010). However, despite
their syntactic differences, both XLink and
in-line declaration are often used to effec-
tively define the same objects.

In the mapping process, XLinks can be
found due to (1) user input, i. e. XLink refer-
ences already exist in the input CityGML
datasets before the mapping process is
started (such as XLinks referring to existing
building boundary surfaces listed in a Solid
object); or (2) the splitting mechanism ap-
plied during the mapping process to divide
large CityGML datasets into smaller chunks
as described in step 1 (Section 3.1). In
both cases however, these XLinks must be
resolved to produce unique and fully con-
nected graphs for the matching process. In
the latter case, each time a feature (e. g.
WallSurface) is split from a building (i. e.
their connection is lost) while streaming the
input CityGML document, an XLink object
containing the ID of the split feature is auto-
matically created and attached to the af-
fected parent building by the tool citygml4j
(see Figure 6 as well as the missing links
marked by the green ellipses and arrows in
Figure 3, step 2 and 3 respectively). This
allows the subsequent recovery of such sev-
ered connections caused by the splitting
process.

By employing a graph database, not
only can such lost connections between
features and their respective parents be re-
constructed, but the syntactic ambiguities
between in-line and XLink objects can also
be disambiguated. This is realized in two
different approaches using internal hash

maps held in memory or Neo4j’s built-in in-
dices stored on disk. Each time a node
containing an ID or href is encountered dur-
ing the mapping process, a corresponding
entry is stored in the respective index struc-
ture (in other words, all XLinks regardless of
their usage shall be recorded). Then, after

Algorithm 1: Mapping a Java object onto corresponding graph entities

Box 1

City Object Structure in Java Corresponding Graph Structure

(Complex) Instance or Object Node

Instance type
(e. g. of class Building)

Node label
(e. g. BUILDING)

Inheritance
(e. g. class Building inherits AbstractBuild­
ing)

No explicit inheritance possible; instead,
contents of all superclasses are successive-
ly added as node attributes (if they are
simple texts) or attached as subgraphs (if
they are complex) to the main container
node

Simple (pure text) object attributes
(e. g. building’s year of construction)

Node attributes
(e. g. buildingNode.yearOfContruction)

Complex object attributes or references
(e. g. boundary surfaces of a building)

Two components: (1) A subgraph
representing the object, and (2) a
relationship edge that connects the main
container node to this subgraph
(e. g. the subgraph representation of a
WallSurface is connected to the building
node by a relationship called boundedBy)

SPATIO-SEMANTIC COMPARISON OF LARGE 3D CITY MODELS IN CITYGML USING A GRAPH DATABASE

gis.Science 3/201890 I

all feature chunks have been mapped onto
graphs, a “post-processing” searches for
indexed hrefs and IDs and links them to-
gether accordingly. As a result, a unique
and fully connected graph representation
of a given city object is formed (see exam-
ple in Figure 5, where the BoundarySur­
faceProperty is connected to both its par-
ents the Building and the Solid object due
to XLinks). This graph is an unambiguous
representation of a CityGML dataset inde-
pendent from the many syntactic variations
of respective CityGML files.

Internal hash maps offer fast response
time but come at the cost of memory con-
sumption. On the contrary, Neo4j indices
require less memory but may slow down
the mapping process due to costly disk
read and write operations. Thus, the latter
approach depends greatly on the storage
selections (e. g. a Solid State Drive (SSD) is
typically significantly faster in terms of read
and write speed compared to a Hard Disk
Drive (HDD)).

3.4 �CALCULATING MINIMUM BOUND-
ING BOXES OF BUILDINGS

By default, the library citygml4j provides a
built-in function that can compute the mini-
mum bounding box of a spatial Java city
object (e. g. a building) by considering all
of its geometric contents (e. g. boundary
surfaces). However, this method has some
limitations. Firstly, input Java objects must
be completely available in memory as a
whole, which is not always the case, since
Section 3.1 shows that large CityGML
datasets are to be split into smaller chunks
that are successively loaded into main
memory. Secondly, if Java objects have un-
resolvable XLinks (such as those contained
in not yet loaded feature chunks), the func-
tion may fail. Thus, to overcome these limi-
tations, graph representations, which are
now connected and syntactically disam-
biguated as a result of Section 3.3, are re-
versely transformed to Java objects, from
which respective minimum bounding boxes
can then be calculated using the above-
mentioned built-in function.

4 �MATCHING 3D CITY MODELS
USING GRAPH DATABASE

The mapping process in the previous step
produces unique and fully connected
graph representations of two arbitrarily
large-sized input CityGML models. This

chapter explains how these graphs can be
semantically and geometrically compared
to each other. Since graphs are composed
of nodes and relationships, the matching
process is based around the concept of
their structure. Namely, it matches the entire
two given graphs from top to bottom (i. e.
from root to leaf nodes) in the following or-
der: node, node properties, relationships
and corresponding subgraphs. Subgraphs
are matched accordingly using the same
method (recursion). Semantically, the
matching process only allows the compari-
son of the following entities if they are:

XX 	Nodes of the same type, i. e. having
the same label;

XX 	Node properties of the same name;
XX 	Relationships of the same type;
XX 	Subgraphs pointed from the same rela-
tionship type.

Subgraphs representing geometric objects
(such as points, lines, polygons, etc.) are
additionally matched based on their geo-

metric types and properties, which shall be
discussed in more details in the following
sections.

4.1 COMPARING NODE PROPERTIES
Actual data are mostly stored in node prop-
erties. Thus, differences found in node
properties indicate possible deviations of
respective data sources. In Neo4j, node
properties are identified by their unique
name and thus values of equally named
properties are to be compared with one
another. Unmatched properties remaining
after the process is complete indicate that
they are either removed from the older
model or inserted into the newer model. To
model such changes (i. e. update, delete
and insert on both property and node level)
and enable subsequent transactions to up-
date the older model, each deviation found
is attached with an EditOperation graph
node on the fly, which stores all relevant in-
formation such as name of affected proper-

Algorithm 2: Matching relationships of two given nodes in the graph database

gis.Science 3 (2018) 85-100

gis.Science 3/2018 I 91

ties, old and new property values, etc. for
later use. An overview of all edit opera-
tions is given in Section 6.1.

4.2 �MATCHING NODE RELATIONSHIPS
Compared to node properties, matching re-
lationships between two given nodes is
more complex considering the fact that rela-
tionships in Neo4j can be traversed in both
directions, namely in OUTGOING and IN­
COMING direction. The matching process
must however remain consistent in one spe-
cific traversing direction, so that no node is
processed twice. The chosen direction is
OUTGOING, as the matching process
starts with root nodes. Additionally, in con-
trast to node properties, a relationship may
occur multiple times for a given node (i. e.
1 to n, n to 1 and n to m relationships).

Taking these into account, Algorithm 2
describes the main concept of matching re-
lationships of two given nodes, where the
function find_candidate in Line 5 plays a
decisive role in terms of both efficiency and
correctness of the whole matching process,
as it determines which object pairs should

be compared to one another based on
their specific characteristics. In CityGML,
the most important aspects that can be
used as a matching pattern among objects
are their geometrical properties as well as
spatial extents.

4.2.1 MATCHING POINT GEOMETRIES
Points are a primitive notion, upon which
all other geometric objects are built. Since
points do not have length, area or volume,
the only property employed to distinguish
them from others is their coordinates (mostly
in 2D or 3D). In practice, however, real-
world coordinates of the same point loca-
tion may differ if they are given in different
Spatial Reference Systems (SRS). Therefore,
input CityGML instance documents should
first be provided in the same spatial refer-
ence system before they can be matched.

On the other hand, even provided in
one common reference system, coordinates
of two representations of the same point
may still differ due to numerical (such as
rounding) and instrument errors. Such minor
deviations should be tolerated. Thus, for a

reference point P1 as centre, depending on
the chosen distance indicator, a neighbour-
hood N (∊) is constructed, where ∊ is the
maximum empirically predetermined al-
lowed distance tolerance. For example, if
the Euclidean distance indicator is chosen,
N (∊) shall be a circle (2D) or a sphere
(3D). However, to calculate this distance,
expensive operations such as square roots
and multiplications are required. Since the
research focuses on matching 3D objects
of massive datasets, for a small error toler-
ance ∊, it is often sufficient to compare indi-
vidual point coordinates in each dimen-
sion, which requires only subtractions. In
this case, N (∊) shall be a square (2D) or a
cube (3D) (see Figure 7). A point P2 is geo-
metrically matched with point P1 if, and only
if, P2 is located inside of N (∊) of P1. Two
geometrically matched points are equal
and thus no further comparison is needed.

4.2.2� �MATCHING THE GEOMETRY OF
LINE SEGMENTS

Since line segments (or LineStrings) are
composed of points, they can be geometri-
cally matched by iterating over all control
points and examining their spatial similari-
ties successively with error tolerance ∊ tak-
en into account (see Figure 8). Consecutive
collinear line segments (given an empirical-
ly predetermined distance tolerance) can
be merged together and thus treated as a
single segment during matching. Alterna-
tively, two LineStrings can be matched us-
ing the Buffer Overlay Statistics (BOS)
methods (Tveite 1999). Like points, geo-
metrically matched LineStrings are also
considered equal.

A more general concept of LineStrings
is curves. A curve has a positive orientation
and each of its curve segments may have
a different interpolation method. However,
as long as such curves are composed of
points, the same approach can be applied
assuming the respective interpolation meth-
ods are also identical, i. e. they must also
be checked.

4.2.3 �MATCHING THE GEOMETRY
OF 3D RINGS

A ring in CityGML can be thought of as a
closed LineString described in Sec-
tion 4.2.2. Buildings in CityGML make ex-
tensive use of polygons (Section 4.2.4),
whose boundaries are typically represent-
ed as LinearRings (Cox et al. 2004,

Figure 7: An illustration of the neighbourhood N (∊) of a reference point P1 in 2D (a) and 3D (b). Since
P2 is located inside of N (∊), it is matched with P1. On the other hand, P3 is not matched with P1 as it is

located outside of N (∊).

a) N (∊) as a square in 2D			 b) N (∊) as a cube in 3D

Figure 8: An example of two geometrically matched LineStrings with error tolerances taken into account,

regardless of the fact that the red LineString has two consecutive collinear line segments

SPATIO-SEMANTIC COMPARISON OF LARGE 3D CITY MODELS IN CITYGML USING A GRAPH DATABASE

gis.Science 3/201892 I

Gröger et al. 2012, Gröger 2010). Al-
though a LinearRing can theoretically con-
sist of nonplanar points in 3D, only Linear­
Rings containing coplanar points are con-
sidered. The geometric comparison of
rings can be performed with the aid of the
libraries Abstract Window Toolkit (AWT) or
Java Topology Suite (JTS). However, both of
them are only applicable to geometric ob-
jects in 2D space, while rings are arbitrar-
ily oriented in 3D. Therefore, only rings that
have similar orientations (given an empiri-
cally predetermined angle tolerance be-
tween their normal vectors) and near-zero
plane-to-plane distance (given a distance
tolerance) are considered as potential
matching candidates. They are then rotat-
ed to a plane parallel to a predefined refer-
ence one (e. g. the plane Oxy) using a ro-
tation matrix as illustrated in Figure 9. In the
next step, the rotated rings are compared
based on their shapes, where the numbers
or orders of ring vertices do not play a role.
Two shapes are geometrically equal if they
contain each other’s vertices considering
the error tolerance ∊.

4.2.4 �MATCHING 3D POLYGON
GEOMETRIES

Polygons are extensively used in CityGML
as a means to describe surfaces of build-
ings and building parts. A polygon consists
of exactly one exterior and an arbitrary
number of interior rings, all of which must
lie within the same plane. While an exteri-
or ring defines the outline, interior rings de-
fine holes in a polygon (Cox et al. 2004,
Gröger et al. 2012, Gröger 2010). There-
fore, a polygon can be thought of as a
shape bounded by an exterior with all inte-
rior rings subtracted from its inner area. The
geometric comparison of two polygons is
then performed in the same manner as with
LinearRings in Section 4.2.3.

Note that 3D polygons are matched
based on their shapes and not how their in-
dividual sub-surfaces are defined. For in-
stance, a polygon with one exterior ring
and one interior ring can be matched with
another polygon defined by a set of non-
intersecting adjacent triangular sub-poly-
gons (i. e. polygon triangulation), if their
shapes are geometrically approximately
the same. This means that the numbers or
orders of sub-polygons contained in the
polygons do not play a role, since the im-
plementation merges all pair-wise non-inter-

secting adjacent sub-polygons, so that they
can be represented as a unique shape as
a whole. Like rings, polygon shapes can
be compared regardless of how their verti-
ces are defined (such as in clockwise or
counter-clockwise order with different start-
ing points).

This method has also been extended
for the other related objects such as Surfac­
es, OrientableSurfaces, MultiSurfaces and
CompositeSurfaces.

4.2.5 MATCHING SOLID GEOMETRIES
A solid is bounded by a set of connected
polygons, whose intersections are either
empty or an edge shared by both respec-
tive polygons. A matching candidate of a
given solid can be determined by using its
footprint (as a polygon) or minimum bound-
ing box (see Section 4.2.6). However, in
contrast to previously discussed geometric
entities, matched solid candidates may still
be unequal since different solids can have
the same footprint or minimum bounding
box. Therefore, found candidates are fur-
ther compared by successively matching
their boundary surfaces (i. e. polygons) as
described in Section 4.2.4. This also ap-
plies to the case where one of the bound-
ary surface is composed of multiple smaller
sub-polygons, since the method matches
only the shapes of boundary surfaces as a
single entity and not how they are formed.

4.2.6 �MATCHING THE GEOMETRY OF
MINIMUM BOUNDING BOXES

The minimum bounding box of a building is
calculated by all its contained geometries,
such as ground, wall and roof surfaces
(Section 3.4). To make full use of the infor-
mation available in all dimensions and thus
increase the probability of finding correct
matching candidates, (3D) minimum
bounding boxes are compared based on
their shared volume.

Given two arbitrary minimum bounding
boxes represented by lower corner points
P, R and upper corner points Q, S respec-
tively, their own and shared volume are de-
noted by VPQ, VRS and Vshared respectively.
For a given threshold H ∊ [0, 1], the follow-
ing applies:

Minimum bounding boxes (P, Q) and
(R, S) are matched

Figure 9: Rotating a 3D (planar) ring

4.2.4 Matching 3D Polygon Geometries

Polygons are extensively used in CityGML as a means to describe surfaces of buildings and building parts. A polygon
consists of exactly one exterior and an arbitrary number of interior rings, all of which must lie within the same plane.
While an exterior ring defines the outline, interior rings define holes in a polygon (Cox et al. 2004, Gröger et al. 2012,
Gröger 2010). Therefore, a polygon can be thought of as a shape bounded by an exterior with all interior rings subtracted
from its inner area. The geometric comparison of two polygons is then performed in the same manner as with LinearRings
in Section 4.2.3.

Note that 3D polygons are matched based on their shapes and not how their individual sub-surfaces are defined. For
instance, a polygon with one exterior ring and one interior ring can be matched with another polygon defined by a set of
non-intersecting adjacent triangular sub-polygons (i. e. polygon triangulation), if their shapes are geometrically
approximately the same. This means that the numbers or orders of sub-polygons contained in the polygons do not play a
role, since the implementation merges all pair-wise non-intersecting adjacent sub-polygons, so that they can be
represented as a unique shape as a whole. Like rings, polygon shapes can be compared regardless of how their vertices
are defined (such as in clockwise or counter-clockwise order with different starting points).

This method has also been extended for the other related objects such as Surfaces, OrientableSurfaces, MultiSurfaces and
CompositeSurfaces.

4.2.5 Matching Solid Geometries
A solid is bounded by a set of connected polygons, whose intersections are either empty or an edge shared by both
respective polygons. A matching candidate of a given solid can be determined by using its footprint (as a polygon) or
minimum bounding box (see Section 4.2.6). However, in contrast to previously discussed geometric entities, matched
solid candidates may still be unequal since different solids can have the same footprint or minimum bounding box.
Therefore, found candidates are further compared by successively matching their boundary surfaces (i. e. polygons) as
described in Section 4.2.4. This also applies to the case where one of the boundary surface is composed of multiple smaller
sub-polygons, since the method matches only the shapes of boundary surfaces as a single entity and not how they are
formed.

4.2.6 Matching the Geometry of Minimum Bounding Boxes
The minimum bounding box of a building is calculated by all its contained geometries, such as ground, wall and roof
surfaces (Section 3.4). To make full use of the information available in all dimensions and thus increase the probability
of finding correct matching candidates, (3D) minimum bounding boxes are compared based on their shared volume.

Given two arbitrary minimum bounding boxes represented by lower corner points P, R and upper corner points Q, S
respectively, their own and shared volume are denoted by VPQ, VRS and Vshared respectively. For a given threshold H Î [0,
1], the following applies:

Minimum bounding boxes (P, Q) and (R, S) are matched

Û ³ Ù ³shared shared

PQ RS

V VH H
V V

.

Both ratios shared

PQ

V
V

 and shared

RS

V
V

must be compared with the threshold H to exclude the case, where the first minimum

bounding box is located completely inside of the second one and vice versa.

5 SPATIAL MATCHING USING AN R-TREE

Section 4.2, particularly Section 4.2.6, determines whether two geometric entities are equivalent and thus can be matched.
However, repeatedly comparing all possible pairs of such objects results in a quadratic time complexity O (n2), which
will become a major technical hurdle as the number of city objects in CityGML datasets grows significantly. Thus, to

Both ratios

Figure 9: Rotating a 3D (planar) ring

4.2.4 Matching 3D Polygon Geometries

Polygons are extensively used in CityGML as a means to describe surfaces of buildings and building parts. A polygon
consists of exactly one exterior and an arbitrary number of interior rings, all of which must lie within the same plane.
While an exterior ring defines the outline, interior rings define holes in a polygon (Cox et al. 2004, Gröger et al. 2012,
Gröger 2010). Therefore, a polygon can be thought of as a shape bounded by an exterior with all interior rings subtracted
from its inner area. The geometric comparison of two polygons is then performed in the same manner as with LinearRings
in Section 4.2.3.

Note that 3D polygons are matched based on their shapes and not how their individual sub-surfaces are defined. For
instance, a polygon with one exterior ring and one interior ring can be matched with another polygon defined by a set of
non-intersecting adjacent triangular sub-polygons (i. e. polygon triangulation), if their shapes are geometrically
approximately the same. This means that the numbers or orders of sub-polygons contained in the polygons do not play a
role, since the implementation merges all pair-wise non-intersecting adjacent sub-polygons, so that they can be
represented as a unique shape as a whole. Like rings, polygon shapes can be compared regardless of how their vertices
are defined (such as in clockwise or counter-clockwise order with different starting points).

This method has also been extended for the other related objects such as Surfaces, OrientableSurfaces, MultiSurfaces and
CompositeSurfaces.

4.2.5 Matching Solid Geometries
A solid is bounded by a set of connected polygons, whose intersections are either empty or an edge shared by both
respective polygons. A matching candidate of a given solid can be determined by using its footprint (as a polygon) or
minimum bounding box (see Section 4.2.6). However, in contrast to previously discussed geometric entities, matched
solid candidates may still be unequal since different solids can have the same footprint or minimum bounding box.
Therefore, found candidates are further compared by successively matching their boundary surfaces (i. e. polygons) as
described in Section 4.2.4. This also applies to the case where one of the boundary surface is composed of multiple smaller
sub-polygons, since the method matches only the shapes of boundary surfaces as a single entity and not how they are
formed.

4.2.6 Matching the Geometry of Minimum Bounding Boxes
The minimum bounding box of a building is calculated by all its contained geometries, such as ground, wall and roof
surfaces (Section 3.4). To make full use of the information available in all dimensions and thus increase the probability
of finding correct matching candidates, (3D) minimum bounding boxes are compared based on their shared volume.

Given two arbitrary minimum bounding boxes represented by lower corner points P, R and upper corner points Q, S
respectively, their own and shared volume are denoted by VPQ, VRS and Vshared respectively. For a given threshold H Î [0,
1], the following applies:

Minimum bounding boxes (P, Q) and (R, S) are matched

Û ³ Ù ³shared shared

PQ RS

V VH H
V V

.

Both ratios shared

PQ

V
V

 and shared

RS

V
V

must be compared with the threshold H to exclude the case, where the first minimum

bounding box is located completely inside of the second one and vice versa.

5 SPATIAL MATCHING USING AN R-TREE

Section 4.2, particularly Section 4.2.6, determines whether two geometric entities are equivalent and thus can be matched.
However, repeatedly comparing all possible pairs of such objects results in a quadratic time complexity O (n2), which
will become a major technical hurdle as the number of city objects in CityGML datasets grows significantly. Thus, to

and

Figure 9: Rotating a 3D (planar) ring

4.2.4 Matching 3D Polygon Geometries

Polygons are extensively used in CityGML as a means to describe surfaces of buildings and building parts. A polygon
consists of exactly one exterior and an arbitrary number of interior rings, all of which must lie within the same plane.
While an exterior ring defines the outline, interior rings define holes in a polygon (Cox et al. 2004, Gröger et al. 2012,
Gröger 2010). Therefore, a polygon can be thought of as a shape bounded by an exterior with all interior rings subtracted
from its inner area. The geometric comparison of two polygons is then performed in the same manner as with LinearRings
in Section 4.2.3.

Note that 3D polygons are matched based on their shapes and not how their individual sub-surfaces are defined. For
instance, a polygon with one exterior ring and one interior ring can be matched with another polygon defined by a set of
non-intersecting adjacent triangular sub-polygons (i. e. polygon triangulation), if their shapes are geometrically
approximately the same. This means that the numbers or orders of sub-polygons contained in the polygons do not play a
role, since the implementation merges all pair-wise non-intersecting adjacent sub-polygons, so that they can be
represented as a unique shape as a whole. Like rings, polygon shapes can be compared regardless of how their vertices
are defined (such as in clockwise or counter-clockwise order with different starting points).

This method has also been extended for the other related objects such as Surfaces, OrientableSurfaces, MultiSurfaces and
CompositeSurfaces.

4.2.5 Matching Solid Geometries
A solid is bounded by a set of connected polygons, whose intersections are either empty or an edge shared by both
respective polygons. A matching candidate of a given solid can be determined by using its footprint (as a polygon) or
minimum bounding box (see Section 4.2.6). However, in contrast to previously discussed geometric entities, matched
solid candidates may still be unequal since different solids can have the same footprint or minimum bounding box.
Therefore, found candidates are further compared by successively matching their boundary surfaces (i. e. polygons) as
described in Section 4.2.4. This also applies to the case where one of the boundary surface is composed of multiple smaller
sub-polygons, since the method matches only the shapes of boundary surfaces as a single entity and not how they are
formed.

4.2.6 Matching the Geometry of Minimum Bounding Boxes
The minimum bounding box of a building is calculated by all its contained geometries, such as ground, wall and roof
surfaces (Section 3.4). To make full use of the information available in all dimensions and thus increase the probability
of finding correct matching candidates, (3D) minimum bounding boxes are compared based on their shared volume.

Given two arbitrary minimum bounding boxes represented by lower corner points P, R and upper corner points Q, S
respectively, their own and shared volume are denoted by VPQ, VRS and Vshared respectively. For a given threshold H Î [0,
1], the following applies:

Minimum bounding boxes (P, Q) and (R, S) are matched

Û ³ Ù ³shared shared

PQ RS

V VH H
V V

.

Both ratios shared

PQ

V
V

 and shared

RS

V
V

must be compared with the threshold H to exclude the case, where the first minimum

bounding box is located completely inside of the second one and vice versa.

5 SPATIAL MATCHING USING AN R-TREE

Section 4.2, particularly Section 4.2.6, determines whether two geometric entities are equivalent and thus can be matched.
However, repeatedly comparing all possible pairs of such objects results in a quadratic time complexity O (n2), which
will become a major technical hurdle as the number of city objects in CityGML datasets grows significantly. Thus, to

 must be

compared with the threshold H to exclude
the case, where the first minimum bounding
box is located completely inside of the sec-
ond one and vice versa.

5 �SPATIAL MATCHING USING
AN R-TREE

Section 4.2, particularly Section 4.2.6,
determines whether two geometric entities
are equivalent and thus can be matched.
However, repeatedly comparing all possi-
ble pairs of such objects results in a quad-
ratic time complexity O (n2), which will be-
come a major technical hurdle as the num-
ber of city objects in CityGML datasets
grows significantly. Thus, to enable more
efficient object retrieval and querying, two
matching strategies organizing buildings in
an R-tree and a grid layout based on their
spatial properties are employed in the
course of this research, the former of which
shall be explained in the following sec-
tions. For more details on the grid layout,
please refer to Nguyen (2017).

Figure 9: Rotating a 3D (planar) ring

Figure 10: Illustration of an adapter (middle) con­

necting spatial indices in Neo4j Spatial (right) with

data stored in Neo4j (left)
.

gis.Science 3 (2018) 85-100

gis.Science 3/2018 I 93

R-trees are tree data structures devel-
oped especially for spatial indexing, i. e.
storing and retrieving geographic informa-
tion, such as locations of rectangles and
polygons. The “R” in R-tree stands for “rec-
tangle”. The main concept of R-trees is that
geometric objects spatially located near to
each other can be grouped into a larger
object containing their minimum bounding
box (or rectangle). Each of these objects is
represented as a leaf in the tree, while the
aggregated object containing the mini-
mum bounding box is assigned to the next
higher level. Recursively, multiple neigh-
bouring internal nodes can be grouped
again to form a higher node on the next
level. This means that if a query geometry
does not intersect a bounding box, then it
also cannot reach any of the contained ob-
jects. As a result, like in most tree data
structures, spatial queries, such as intersec-
tion and nearest neighbour search, are
very efficient, as most irrelevant nodes can
be avoided.

5.1.1 CONSTRUCTING THE R-TREE
R-trees are constructed using the plug-in
Neo4j Spatial. Coordinates of lower and
upper corner points of city models are not
needed beforehand, since an R-tree auto-
matically expands its envelope on the fly.
Building footprints (or 2D minimum bound-
ing rectangles) are however required to
construct the R-tree, since the plug-in Neo4j
Spatial only supports up to 2D R-trees. In
case of unavailable building footprints,

they shall be extracted or computed (as de-
scribed in Section 3.4). Splitting and merg-
ing nodes in an R-tree are handled by Ne-
o4j Spatial, which ensures the tree structure
is always balanced.

5.1.2 �ASSIGNING BUILDINGS TO
THE R-TREE

The most important task while expanding
an R-tree is to link the spatial information to
the data sources it represents. To achieve
this, a suitable adapter is needed (see Fig-
ure 10), where a connection between an
R-tree node and the footprint or minimum
bounding box of the respective building is
established. Buildings can then be as-
signed to an R-tree on the fly applying this
adapter. Note that each building is as-
signed to exactly one R-tree node.

5.1.3 �MATCHING BUILDINGS USING
THE R-TREE

To find the best matching candidates for a
given reference building, a query contain-
ing its footprint is sent to the R-tree index
layer, which then returns a set of R-tree
nodes that intersect or overlap with the in-
put footprint. Using the above-mentioned
constructed adapter, matching building
candidates can be retrieved. If no candi-
date is found, a delete operation shall be
created for the current reference building in
the older city model. Otherwise, the best
candidate among returned buildings is de-
termined as described in Section 4.2.6. Fi-
nally, an insert operation is created for

each remaining unmatched building in the
newer city model.

The most important advantage of R-
trees is the logarithmic time complexity O
(logMn) on search query operations. More-
over, with the help of Neo4j Spatial, em-
ploying an R-tree while matching is simple
and straightforward.

6 �UPDATING 3D CITY MODELS USING
THE GRAPH DATABASE

The matching process in Sections 4 and 5
attaches edit operations to deviation sourc-
es on the fly while keeping the actual data
untouched. These edit operations can then
be converted to WFS transactions and ex-
ecuted accordingly in the updating process
in this chapter.

6.1 EDIT OPERATIONS
The general model of all edit operations
employed in this research is shown in Fig-
ure 11. EditOperation is the superclass of
all edit operations. It defines a targetNode,
to which the edit operation is attached,
and a flag isOptional indicating whether
the respective operation must be executed
under all circumstances. Such flag is mainly
set in scenarios, where geometrically
equivalent objects are defined by different
syntactic methods. The class EditProperty­
Operation defines all edit operations cre-
ated on node properties (i. e. object attrib-
utes), while EditNodeOperation defines
edit operations on the node level (i. e. geo-
objects). Figure 12 illustrates how edit op-
erations are attached to deviation sources
in the graph database.

6.2 �UPDATING BUILDINGS USING THE
WEB FEATURE SERVICE (WFS)

EditPropertyOperation objects (i. e. inserts,
updates or deletes of node properties) can
be transformed to corresponding WFS trans-
actions using their respective stored informa-
tion. The same applies for EditNodeOpera­
tion with the only exception of InsertNode­
Operation, which requires a payload (or
content) encoded in XML (Vretanos 2014).
XML contents of affected entities can be re-
trieved by using a Graph-to-CityGML parser,
which basically is the reverse of the map-
ping process introduced in Section 3 as de-
scribed in Figure 13. For a more compre-
hensive look at the specifications of WFS
requests and responses, please refer to Vre-
tanos (2014) and Nguyen (2017).Figure 11: A UML class diagram of all edit operations

SPATIO-SEMANTIC COMPARISON OF LARGE 3D CITY MODELS IN CITYGML USING A GRAPH DATABASE

gis.Science 3/201894 I

7 APPLICATION EXAMPLE

7.1 SCENARIO WORKFLOW
This chapter illustrates a typical use case
scenario where the CityGML change de-
tection tool is employed in the context of
city modelling and updating involving the
3D City Database. The 3D City Database
(3DCityDB) is an Open Source geodata-
base for CityGML (3DCityDB 2017). It
consists of a relational database schema
and several software tools to import, export
and visualize virtual 3D city models. As
shown in Figure 14, the overall workflow is
divided into the following steps:
1.	 Export the area of an existing city mod-

el stored in the relational 3DCityDB, in
which updates or modifications should
be performed, to a CityGML document
using the Importer/Exporter tool.

2.	 Edit the exported CityGML dataset us-
ing some modelling tools (such as the
plug-in CityEditor (3DIS 2017) in
SketchUp) and save the city model with
all the modifications in a new CityGML
file.

3.	 Compare the exported and the edited
CityGML document with the help of the
change detection tool using a graph
database (e. g. Neo4j) as explained in
the previous chapters.

4.	 Update the original city model stored in
the 3DCityDB by converting the Edit­
Operation nodes created from found
deviations to database transactions
(such as WFS transactions).

This example illustrates a scenario, in
which both the relational 3DCityDB and
the graph database Neo4j interact with
each other in normal use cases. While
Spatial Relational Database Management
Systems (SRDBMS) like the 3DCityDB are
often used to manage large 3D city models
(also in combination with GIS), they are not
well suited to matching object-oriented
data with multi-level deep hierarchical
structure in CityGML. Therefore, by com-
bining a graph database to the existing
3DCityDB and employing the CityGML
change detection tool as a connecting
bridge, it is possible to edit or update a
specific object stored in the 3DCityDB
based on the edit operations created in the
graph database without having to override
the entire database contents.

The first step can be done using the Im-
porter/Exporter tool that comes with the

Figure 12: An illustration of how edit operations are attached to deviation sources in the graph database

Figure 13: Retrieving XML contents of a CityGML object using a Graph-to-CityGML parser

Figure 14: The overall workflow of a typical use case scenario in the context of change detection between

CityGML city models stored in the 3DCityDB

gis.Science 3 (2018) 85-100

gis.Science 3/2018 I 95

3DCityDB, while the remaining steps shall
be explained in more details in the next
sections.

7.2 �EDITING AN EXISTING CITYGML
DOCUMENT AND DETECTING
CHANGES

This section illustrates an example of how
thematic properties and geometric objects
of an existing building model exported
from a 3D City Model repository (e. g.
3DCityDB) can be modified using the plug-
in CityEditor in the modelling software
SketchUp. The objective then is to detect
changes made by the user to this model.
The procedure is described as follows:
1.	 Import the CityGML model exported

from the repository into SketchUp using
the plug-in CityEditor (see Figure 15a).

2.	 Perform some changes to the imported
building models. In this simplified sce-
nario, regarding geometrical changes,
the upper horizontal edge of one of the
walls (marked as green in Figure 15a)
is moved upwards along the vertical
axis (i. e. Oy-axis). The result is illustrat-
ed in Figure 15b. On the other hand,
regarding thematic as well as attribu-
tive information, considering for exam-
ple the thematic elements in the original
document (Box 2).
The three changes in Box 3 are performed
to the thematic data shown in Box 2.

3.	 Export the modified model to another
CityGML file and employ the CityGML
change detection tool to find the chang-
es between the two models.

Both the old and the modified CityGML file
contain solid geometries bounded by a set
of XLinks referring to the composite (bound-
ary) surfaces contained in the respective
buildings. Their excerpts are shown in
Box 4 and Box 5.

Sometimes, the order of how surface
members are listed in the solid objects may
change arbitrarily (for example, both of the
roof surfaces now appear at the end of the
XLink list of the solid object in the modified
CityGML file). Since the implementation
matches geometrical objects based on
their geometry, this does not affect the end
matching results, even if the IDs would
have been changed.

After the matching process is complete,
all found changes are summarized in the
console as well as stored in several output
CSV files. In this particular test case, a total

Box 2

<gen:stringAttribute name="UpdatedBy">
 <gen:value>UserA</gen:value>
</gen:stringAttribute>
<bldg:measuredHeight uom="m">6.947</bldg:measuredHeight>
<bldg:storeysAboveGround>2</bldg:storeysAboveGround>

Box 3

Property or Attribute Old Value New Value

uom of bldg:measuredHeight m urn:adv:uom:m

gen:value of gen:stringAttribute “Updatedby” UserA UserB

bldg:storeysAboveGround 2 3

Box 4

<!-- Old CityGML file -->
<gml:CompositeSurface>
 <gml:surfaceMember xlink:href="#Roof_Surface_0_Poly"></gml:surfaceMember>
 <gml:surfaceMember xlink:href="#Roof_Surface_1_Poly"></gml:surfaceMember>
 <gml:surfaceMember xlink:href="#Wall_Surface_0_Poly"></gml:surfaceMember>
 <gml:surfaceMember xlink:href="#Wall_Surface_1_Poly"></gml:surfaceMember>
 <gml:surfaceMember xlink:href="#Wall_Surface_2_Poly"></gml:surfaceMember>
 <gml:surfaceMember xlink:href="#Wall_Surface_3_Poly"></gml:surfaceMember>
 <gml:surfaceMember xlink:href="#Ground_Surface_Poly"></gml:surfaceMember>
</gml:CompositeSurface>

Box 5

<!-- Modified CityGML file -->
<gml:CompositeSurface>
 <gml:surfaceMember xlink:href="#Wall_Surface_0_Poly"></gml:surfaceMember>
 <gml:surfaceMember xlink:href="#Wall_Surface_1_Poly"></gml:surfaceMember>
 <gml:surfaceMember xlink:href="#Wall_Surface_2_Poly"></gml:surfaceMember>
 <gml:surfaceMember xlink:href="#Wall_Surface_3_Poly"></gml:surfaceMember>
 <gml:surfaceMember xlink:href="#Ground_Surface_Poly"></gml:surfaceMember>
 <gml:surfaceMember xlink:href="#Roof_Surface_0_Poly"></gml:surfaceMember>
 <gml:surfaceMember xlink:href="#Roof_Surface_1_Poly"></gml:surfaceMember>
</gml:CompositeSurface>

Box 6

__
| MATCHER ... |
| Number of UPDATE_PROPERTY nodes:� 7|
| Number of DELETE_NODE nodes:� 0|
| Number of DELETE_PROPERTY nodes:� 0|
| Number of INSERT_NODE nodes:� 0|
| Number of INSERT_PROPERTY nodes:� 0|
| |
| TOTAL NUMBER OF CREATED NODES:� 7 nodes|
| OF WHICH ARE OPTIONAL:� 0 nodes|
| MATCHER'S ELAPSED TIME:� 0 seconds|
___/

SPATIO-SEMANTIC COMPARISON OF LARGE 3D CITY MODELS IN CITYGML USING A GRAPH DATABASE

gis.Science 3/201896 I

of 7 edit operations corresponding to the
four changes in geometries and 3 changes
in thematic properties are detected and
summarized in Box 6.

By moving the green edge in Fig-
ure 15a vertically upwards, the three
boundary wall surfaces and one boundary
roof surface adjacent to this edge are
changed during the process. This explains
the total number of four geometrical chang-
es found.

7.3 �UPDATING CITYGML OBJECTS
STORED IN THE 3DCITYDB

The edit operations created previously are
now converted to database transactions re-
quired to perform updates in the 3DCityDB.
Such transactions can be Structured Query
Language (SQL) or WFS transactions, the lat-
ter of which can be produced using the tool
proposed in this research. However, in order
to execute WFS transactions, a transactional
WFS (or WFS-T) running on the 3D city mod-
el repository (3DCityDB) is required. The com-
mercial WFS version for 3DCityDB provided
by virtualcitySYSTEMS is employed in this test
case. Box 7 shows an example of a WFS
transaction payload required to update the
attribute uom of the property measured­
Height stored in the building Test_Building
(Box 7).

8 APPLICATION RESULTS

8.1 TEST SETUPS
The following two experiments are per-
formed on a dedicated server-class ma-

chine running SUSE Linux Enterprise Server
12 SP1 (64 bit) and equipped with Intel®
Xeon® CPU E5-2667 v3 @3.20GHz (16
CPUs + Hyper-threading), a Solid-state
Drive Array (SSD) connected via PCIe as
well as 1 TB of main memory.

In the first test case, two CityGML data-
sets recorded at different timestamps of Ber-
lin Moabit (see Figure 16) are compared
to each other. Both are encoded in City
GML v2.0.0, contain LOD2 information of
approximately 1,100 and 12,300 build-
ings respectively. Their R-tree footprints are
given in Figure 17. The Building objects in
these models typically contain a Solid,
whose SurfaceMembers are XLinks refer-
ring to existing BoundarySurfaces. They
also may contain some BuildingParts and
many Generic Attributes. Note that the

matching process can detect changes in all
LODs.

The second test case focuses on the
tool’s performance against massive input
datasets. Thus, the entire 3D city model of
Berlin (with similar model structure to that of
Berlin Moabit) containing approximately
540,000 buildings and occupying
15.5 GB in physical storage is used. The
new dataset contains changes added man-
ually to the old one, such as inserts, deletes
and updates of the thematic and generic
attributes of the objects, as well as inserts
and deletes of complex objects such as
buildings and their boundary surfaces.

Corresponding edit operations of the
detected changes can be found in the
graph database as well as in separate
CSV files, where all of their information

Figure 15: An example of how geometric objects of a building (whose bounding box is highlighted in yel­

low) imported from the original CityGML dataset can be modified in SketchUp using the plug-in CityEditor

a) The 3D model of the selected building before
the green edge is moved upwards	

b) The 3D model of the selected building after the
green edge has been moved

Figure 16: A visualization excerpt of the 3D city model of Berlin (District of Moabit)

gis.Science 3 (2018) 85-100

gis.Science 3/2018 I 97

(such as source nodes, property names,
etc.) is stored. This information can be uti-
lized to create WFS transactions as de-
scribed in Section 7.3.

8.2 TEST CONFIGURATIONS
Both the testing system and Neo4j share the
same Java Virtual Machine (JVM), which is
provided with an initial and maximum heap
space of 30 GB. The Java concurrent gar-
bage collector G1GC is employed. The
application configurations for the mapping

and matching process are empirically deter-
mined to ensure a stable testing environ-
ment and optimum throughput. By default
(unless specified otherwise), the following
configurations are applied: multi-threading
with 1 producer and 15 consumers, split-
ting CityGML elements per collection mem-
ber (top-level feature), indexing using hash
maps stored in memory while mapping,
matching buildings using an R-tree with M =
10, batch size of 10 buildings and 5000
operations per database transaction.

8.3 �EXPERIMENT RESULTS –
TEST CASE 1

The test run is performed in under three min-
utes. The runtime of the mapping and
matching process can be found in Box 8.

A total of 170,270 deviations are de-
tected. The deviation types and corre-
sponding numbers are listed in Box 9.

Since the newer city model covers a
much larger area than the older model,
most buildings (i. e. 11,197 of 12,228
buildings) of the newer model do not exist
in the older model and can be thought of
as “newly constructed” in the area. On the
other hand, 37 of 1,068 buildings of the
older model cannot be found in the newer
model and can be thought of as “recently
abolished”. As a result, between both
datasets, a total number of 1,031 build-
ings (11,197 – 12,228 = 1,068 – 37 =
1,031) remain, which means that their
spatial position and bounding box do not
change over time (although other proper-
ties or thematic attributes are changed, as
indicated by 86 new properties as well as
95,163 changed properties found). These
buildings are all located inside the smaller
R-tree footprint of the older city model in
Figure 17.

8.4 �EXPERIMENT RESULTS –
TEST CASE 2

8.4.1 �STATISTICS OF MAPPED GRAPH
DATABASE

After the mapping process of two 3D city
models of Berlin is complete, a total num-
ber of 321,142,046 nodes are created
(Box 10).

The graph database allocates 126 GB
of disk storage in total (excluding the City
GML files and index data).

8.4.2 �MULTI-THREADING
PERFORMANCE

The multi-threading implementation of the
mapping and matching process is realized
based on the well-known concurrent pro-
ducer-consumer design pattern. The differ-
ences in performance between various
configurations of the numbers of producers
and consumers are shown in Figure 18.
The results show that the matching process
generally benefits greatly from the number
of assigned concurrent threads. However,
diminishing returns are observed where the
total number of producers and consumers

Box 8

Whole process 163 seconds

Mapping process 98 seconds

Matching process 65 seconds

Box 9

Detected deviations 170,270

New properties found 86

Changed property values 95,163

New complex objects found
of which are buildings

46,915
11,197

Complex objects deleted
of which are buildings

28,106
37

Box 10

Object Type Number of Created
Nodes

Buildings 1,078,364

Building Parts 458

Solids 149,570

Boundary Surfaces 15,407,528

Polygons 12,928,580

Generic String Attributes 23,941,698

Generic Integer Attributes 4,041,104

Generic Double Attributes 3,510,252

Box 7

<wfs:Transaction service="WFS" version="2.0.0">
 <wfs:Update typeName="bldg:Building">
 <wfs:Property>
 <wfs:ValueReference>bldg:measuredHeight@gml:uom</wfs:ValueReference>
 <wfs:Value>urn:adv:uom:m</wfs:Value>
 </wfs:Property>
 <fes:Filter>
 <fes:ResourceId rid="Test_Building"/>
 </fes:Filter>
 </wfs:Update>
</wfs:Transaction>

SPATIO-SEMANTIC COMPARISON OF LARGE 3D CITY MODELS IN CITYGML USING A GRAPH DATABASE

gis.Science 3/201898 I

exceeds that of the testing system’s physical
CPU cores.

8.4.3 �INDEXING PERFORMANCE
WHILE RESOLVING XLINKS

Figure 19 shows the significant impact on
runtime performance between storing indi-
ces in memory (using self-developed inter-
nal hash maps) and on disk (using Neo4j
legacy indices). The former gives a much
better overall runtime performance but re-
quires a large amount of main memory. On
the other hand, the latter is more memory
efficient but significantly slower due to ex-
pensive disk read and write operations.

9 CONCLUSION AND FUTURE WORK
Overall, the mapping process developed
in this research is capable of handling arbi-
trarily large-sized CityGML documents with
efficient memory consumption. In addition,
it also resolves the syntactic ambiguities al-
lowed in (City)GML between in-line and
XLink objects. The matching process can
detect deviations between mapped graphs
with respect to semantic and geometric
properties of city objects. In addition, al-
though LOD2 data were used in the test
scenarios, changes in other LODs can also
be detected. Moreover, geometric objects
such as points, line segments, polygons,
surfaces, etc. can be matched correctly
even with altered identifiers. Furthermore,
buildings can be organized in a grid lay-

out or an R-tree based on their spatial allo-
cations. These spatial indexing schemes of-
fer a noticeable boost in overall perfor-
mance. Found deviations are attached to
their respective sources in the graph data-

base and transformed to WFS requests
complying with the official OGC stand-
ards.

The implementation is currently restrict-
ed to the modules Appearance and Build­

Figure 17: R-tree footprints of the old and new 3D city model of Berlin Moabit. The older model (left) covers a much smaller area compared to the newer one

(right).

Figure 18: Differences in multi-threading performance. P and C denote the number of producers and con­

sumers respectively

gis.Science 3 (2018) 85-100

gis.Science 3/2018 I 99

ing (including related objects such as Build­
ingPart, BoundarySurface, etc.). Implicit
geometries are not included. Moreover,
both input CityGML documents must be
provided in the same spatial reference sys-
tem.

In the near future, we intend to extend
the implementation to overcome some of
the above-mentioned limitations, such as to
include additional modules (e. g. CityFurni­
ture, Transportation, Bridge, Tunnel, etc.)
and to integrate a coordinate system trans-
formation function. Moreover, by utilizing
the mapping process, it is possible to per-
form the analysis of CityGML datasets us-
ing their graph representations and graph
querying or reasoning tools. In addition,
more tests are required to evaluate applica-
tion outputs against all different types of geo
metrical deviations. Besides WFS transac-
tions, edit operations stored in the graph
database can also be converted to SQL
transactions to directly update city objects
contained in the 3DCityDB. This is one of
the first steps in enabling collaborative
work in editing and updating 3D city mod-

els in CityGML providing check-out/check-
in tools for the 3DCityDB in the future
(Chaturvedi et al., 2015). A Graph-to-City

GML and Graph-to-Relational parser are
therefore of interest.

Figure 19: The performance of storing indices on disk (using Neo4j built-in indices) and in memory (using

internal hash maps)

Titelbild // Cover image: Das Bild zeigt das Ergebnis einer Solarpotenzialanalyse auf dem 3D-Stadtmodell von Helsinki. Das Besondere ist hierbei, dass zum einen die Globalstrah­

lung sowohl auf den Dächern als auch auf den Wänden berechnet wurde und zum anderen zur Berücksichtigung der Verschattung durch Vegetation, Dachaufbauten und Balkone das

CityGML- sowie das Mesh-basierte 3D-Stadtmodell der Stadt Helsinki gematcht und integriert wurden (Quelle: Lehrstuhl für Geoinformatik, TU München).

IMPRESSUM // PUBLICATION INFORMATION

gis.Science – Die Zeitschrift für Geoinformatik ISSN 1869-9391 // Redaktion: Gerold Olbrich, olbrich@vde-verlag.de, Tel.: +49(0)69-840006-1121 //
Hauptschriftleiter: Prof. Dr.-Ing. Ralf Bill, ralf.bill@uni-rostock.de, Tel +49(0)381-498-3200 // Editorial Board: Prof. Dr. Lars Bernard, TU Dresden; Dr. Andreas
Donaubauer, TU München; Prof. Dr. Max Egenhofer, University of Maine Orono; Prof. Dr. Manfred Ehlers, Universität Osnabrück; Prof. Dr. Klaus Greve, Univer-
sität Bonn; Dr. Stefan Lang, Universität Salzburg; Prof. Dr. Stephan Nebiker, Fachhochschule Nordwestschweiz, Prof. Dr. Josef Strobl, Universi-
tät Salzburg // Anzeigen: Katja Hanel, VDE VERLAG GMBH, Telefon +49(0)69/840006-1341, hanel@vde-verlag.de // Anschrift für Zeitschrif-
tenabonnements: Vertriebsunion Meynen GmbH & Co. KG, Cem Küney, Große Hub 10, 63344 Eltville am Rhein, Tel. +49(0)61 23/92 38-234,
Fax +49(0)61 23/92 38-244, vde-leserservice@vuservice.de // gis.Science erscheint im: Wichmann Verlag im VDE VERLAG GMBH, Bismarckstraße 33,
10625 Berlin, Tel. +49(0)30/34 80 01–0, Fax +49(0)30/34 80 01-9088, www.wichmann-verlag.de // Geschäftsführung: Dr.-Ing. Stefan Schlegel,
Margret Schneider // Verlagsleiter Zeitschriften: Ronald Heinze // Druck: Bosch-Druck GmbH, Ergolding // Erscheinungsweise: 10 x jährlich, davon
4 Ausgaben gis.Science, 6 Ausgaben gis.Business // Jahresabonnement (10 Hefte): 133,00 EUR zzgl. Versandkosten, Studenten/Auszubildende 63,00 EUR
zzgl. Versandkosten, Mitglieder des Deutschen Dachverbandes für Geoinformation e.V. (DDGI) erhalten das Abo im Rahmen ihrer Mitgliedschaft // Bezugs-
zeitraum: Ein Abonnement gilt für mindestens ein Jahr und verlängert sich jeweils um weitere 12 Monate, wenn es nicht bis spätestens 6 Wochen vor Ablauf
des Bezugszeitraums gekündigt wurde. Bei Nichterscheinen aus technischen Gründen oder höherer Gewalt entsteht kein Anspruch auf Ersatz. // Alle in
gis.Science erscheinenden Beiträge, Abbildungen und Fotos sind urheberrechtlich geschützt. Reproduktion, gleich welcher Art, können nur nach schriftlicher
Genehmigung des Verlags erfolgen. // © 2018 VDE VERLAG, Berlin • Offenbach. Die gis.Science ist seit 2004 in der internationalen Zitationsdatenbank
Scopus gelistet.

SPATIO-SEMANTIC COMPARISON OF LARGE 3D CITY MODELS IN CITYGML USING A GRAPH DATABASE

gis.Science 3/2018100 I

References

3DCityDB (2017): The CityGML Database
3DCityDB. https://www.3dcitydb.org, ac-
cessed 01/2018.

3DIS – 3D Information Systems (2017): CityEdi-
tor – Import, Editing and Export of CityGML
Models using SketchUp. https://www.3dis.
de/loesungen/3d-stadtmodelle/cityeditor/, ac-
cessed 01/2018.

Agoub, A.; Kunde, F.; Kada, M. (2016): Poten-
tial of Graph Databases in Representing and En-
riching Standardized Geodata. In: Kersten, T. P.
(Ed.): Dreiländertagung der SGPF, DGPF und
OVG – Lösungen für eine Welt im Wandel.
DGPF Publication, Bern, Switzerland, Vol. 25,
pp. 208-216.

Bakillah, M.; Bédard, Y.; Mostafavi, M. A.; Bro-
deur, J. (2009): SIM-NET: A View-Based Seman-
tic Similarity Model for Ad Hoc Networks of Geo
spatial Databases. In: Transactions in GIS, 13,
pp. 417-447.

Berg, M. d.; Cheong, O.; Kreveld, M. v.; Over-
mars, M. (2008): Computational Geometry: Al-
gorithms and Applications. 3rd Ed. Springer, Ber-
lin/Heidelberg/New York.

Bray, T.; Paoli, J.; Sperberg-McQueen, C. M.;
Maler, E.; Yergeau, F. (2008): Extensible Markup
Language (XML) 1.0 (Fifth edition). https://
www.w3.org/TR/xml/, accessed 03/2017.

Chaturvedi, K.; Smyth, C. S.; Gesquière, G.;
Kutzner, T.; Kolbe, T. H. (2015): Managing Ver-
sions and History Within Semantic 3D City Mod-
els for the Next Generation of CityGML. In: Ab-
dul-Rahman, A. (Ed.): Advances in 3D
Geoinformation. Springer, Berlin/Heidelberg/
New York, pp. 191-206.

Cox, S.; Daisey, P.; Lake, R.; Portele, C.; White-
side, A. (2004): OpenGIS Geography Markup
Language (GML) Implementation Specification
Version 3.1.1. OGC document number 03-
105r1. http://www.opengeospatial.org/stand
ards/gml, accessed 03/2017.

DeRose, S.; Maler, E.; Orchard, D.; Walsh, N.
(2010): XML Linking Language (XLink) Version
1.1. https://www.w3.org/TR/xlink11/, ac-
cessed 03/2017.

Egenhofer, M. J.; Franzosa, R. D. (1991): Point-
set Topological Spatial Relations. In: International

Journal of Geographical Information Systems, 5
(2), pp. 161-174.

Egenhofer, M. J.; Herring, J. (1991): Categoriz-
ing Binary Topological Relations Between Re-
gions, Lines, and Points in Geographic Databas-
es. Technical report, Department of Surveying
Engineering, University of Maine.

Falkowski, K.; Ebert, J. (2009): Graph-based Ur-
ban Object Model Processing. City Models,
Roads and Traffic (CMRT’09): Object Extraction
for 3D City Models, Road Databases and Traffic
Monitoring-Concepts, Algorithms and Evaluation,
Paris, France, 9.

Gröger, G. (2010): Modeling Guide for 3D Ob-
jects - Part 1: Basics (Rules for Validating GML Geo
metries in CityGML). http://en.wiki.quality.sig3d.
org/index.php/Modeling, accessed 03/2017.

Gröger, G.; Kolbe, T. H.; Nagel, C.; Häfele, K.-
H. (2012): OpenGIS(R) City Geography Markup
Language (CityGML) Encoding Standard Version
2.0.0. OGC® document number 12-019.
http://www.opengeospatial.org/standards/
citygml, accessed 03/2017.

Guttman, A. (1984): R-trees: A Dynamic Index
Structure For Spatial Searching. In: Proceedings
of the 1984 ACM SIGMOD International Con-
ference on Management of Data (SIGMOD '84).
Boston, MA, USA. ACM, New York, NY, USA,
pp. 47-57.

Hunt, J. W.; McIlroy, M. D. (1976): An algorithm
for differential file comparison. Computing Sci-
ence Technical Report 41, Bell Laboratories
(1976).

Nagel, C. (2017): citygml4j - The Open Source
Java API for CityGML. https://github.com/city
gml4j/citygml4j, accessed 03/2017.

Navratil, G.; Bulbul, R.; Frank, A. U. (2010):
Maintainable 3D Models of Cities. In: Proceed-
ings of the 15 International Conference on Urban
Planning, Regional Development and Information
Society. Vienna, Austria. CORP – Competence
Center of Urban and Regional Planning, pp.
413-420.

Nguyen, S. H. (2017): Spatio-semantic Compar-
ison of 3D City Models in CityGML using a
Graph Database. Master’s thesis, Department of
Informatics, Technical University of Munich,

2017. https://mediatum.ub.tum.de/1374646,
accessed 01/2018.

Nguyen, S. H.; Yao, Z.; Kolbe, T. H. (2017):
Spatio-semantic Comparison of Large 3D City
Models in CityGML using a Graph Database. In:
ISPRS Ann. Photogramm. Remote Sens. Spatial
Inf. Sci., IV-4/W5, 2017, pp. 99-106.

Olteanu, A.; Mustière, S.; Ruas, A. (2006):
Matching Imperfect Spatial Data. In: Caetano,
M.; Painho, M. (Eds.): Proceedings of 7th Inter-
national Symposium on Spatial Accuracy Assess-
ment in Natural Resources and Environmental Sci-
ences. Lisbon, Portugal, 2006, pp. 694-704.

Oracle Corporation (2015): Java Architecture for
XML Binding (JAXB). http://docs.oracle.com/
javase/tutorial/jaxb/intro/arch.html, accessed
03/2017.

Redweik, R.; Becker, T. (2015): Change Detec-
tion in CityGML Documents. In: Breunig M.; Al-
Doori M.; Butwilowski E.; Kuper P.; Benner J.;
Haefele K. (Eds.): 3D Geoinformation Science.
Lecture Notes in Geoinformation and Cartogra-
phy. Springer, Cham, pp. 101-121.

Tveite, H. (1999): An Accuracy Assessment
Method for Geographical Line Data Sets Based
on Buffering. In: International Journal of Geo-
graphical Information Science, 13 (1), pp. 27-
47.

Vretanos, P. A. (2014): OGC® Web Feature
Service 2.0 Interface Standard. OGC® docu-
ment number 09-025r2. http://www.opengeo
spatial.org/standards/wfs, accessed 03/2017.

Wang, Y.; DeWitt, D. J.; Cai, J. Y. (2003): X-
Diff: An Effective Change Detection Algorithm for
XML Documents. In: Proceedings of the Interna-
tional Conference on Data Engineering. Banga-
lore, India. IEEE Xplore, pp. 519-530.

