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Der Beitrag zeigt einen Weg, nichtlineare Be-
obachtungen unterschiedlicher Art in einer ge-
meinsamen Ausgleichung zu behandeln.

In the data process of the construction of digital city and
digital nation, and the modern deformation monitoring,
many kinds of measurements with different precision
containing geometric and physical data are captured.
The distribution types of these data can be divided
into normal distribution, Laplace’s distribution, normal
mixed distribution and so on. But the main distribution
is normal. Meantime the relations between these observ-
ing data and the unknown parameters are nonlinear in
most of the cases. So far different kinds of observing
data with different precision usually can independently
be processed with the method of classical linear least
square, respectively. Obviously it is not scientific and ac-
curate. Now the theory of data process with nonlinear
least square method has been an important object to
be studied in the field of surveying and mapping all
over the world. So the International Association of Geo-
desy (IAG) thinks it as an important question for study.
Now it is beginning to study the data process with the
nonlinear least square method, supposing that the non-
linear functions are continuous and derivative. Therefore
we can get the derivatives of the target function and cal-
culate a group of best parameters to make the nonlinear
target function to be extreme value. The method is com-
plex and takes more calculating load. The nonlinear in-
tegral least square adjustment containing different kinds
of observing data with different precision is the same as
the above. To solve the nonlinear integral least square
adjustment including different kind of observing data
with different precision, a new solution model and its cal-
culating method are put forward. The new method
doesn’t derive the derivative of the relative functions.
The calculating load of the new nonlinear model is
less than the existing methods and easy to be calculated.
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1 Solving model of nonlinear integral least
square adjustment with non-derivative of
the error functions

To study the problem conveniently, we suppose that there
are two kinds of observing data with different precision.
Carrying out the integral joined adjustment, the observ-
ing data can be divided into several groups according to
the kind and precision of data and the nonlinear error
function of each group should be founded. Now suppose

there are two groups of observing data, L; and L;,
mx1 nx1

whose weight matrices are P; and P;, and correspond-
mxm nxn

ing correct matrices are V; and V, respectively. In the

mean time, L; is notrelativeto L, - d is the unknown
mx1 nx1 sx1

parameter matrix. So we can get the nonlinear error func-
tion as

Vi =fi(didy...ds) — Ly P; who belong to normal

distribution (1)

Vo = fo(dd>...dy) — L, P> who belong to Lalace's

distribution

In order to obtain the more precise adjusting results, it is
important to understand the weights of all kinds of ob-
serving data when carrying out the integral process of
different kinds of data with different precision. One
method to solve the problem is often used to get the ap-
propriate weight ratio of all kinds of data. Supposing the
weight of normal data is P; and that of Laplace’s data is
P, = P;C/|V,|, in which C can be obtained from the
function table of standard normal accumulated distribu-
tion. In general, |V,| > C. To get further the more reli-
able weight ratio, then the more reliable variance of all
kinds of observing data can be calculated with the poster-
iori method. So we get the more appropriate weight ratio.
From equation (1), we can get the nonlinear integral least
square adjustment model as
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min F(d) = VI P1V, + VIP,V, = ZPuVlzi + szjvzzj = ZPu(fn(d) — L)+ ZPZJ‘(ﬁj(d) Iy’
i=1 =1 i=1 =1
= " Piuol(d) + Y Pye3;(d) = Fi(d) + Fa(d) (2)
i=1 =1

whose target function is the square sum of F(d) = F(d) + F»(d). There have been some methods to solve the model
(2). In the calculating process, we must get the first power and second power derivatives of the target function, and S-
dimensional power function group must be solved repeatedly to get the search direction. It is complex to carry on the
work and takes more time. Therefore we put forward a non-derivative method to solve the problem in the paper.
We all know that the stable solution of the model (2) can be obtained by the essential condition of the extreme value.
According to the essential condition of its extreme value, model (2) must satisfy VF(d) = 0, that is

09y (d) 0pyy(d) 001,,(d) Opyy(d) 0y (d) 09, (d)
od, od, o od, od, od, o od,
09y (d) 0pyy(d) 001,,(d)  Opyy(d)  0pyy(d) 09, (d)
9p11(d) Bpy5(d) 0p1,(d) Bpyi(d) dpy(d) 0, (d)
Od, Od, o Od, Od, Od, o Od,
P 911(d)
P> 912(d)
P P1m(d)
P = , o(d) = m
Py #(d) 01 (d)
Py 02, (d)
P2” (pZn (d)
0py1(d) 0pyy(d) 091,,(d) Opy(d) 0y (d) 0y, (d)
0d, od; o Od; Od Od; o Od;
0py1(d) 0pyy(d) 091,,(d) Opy(d) 0y (d) 0y, (d)
Let JT = Od> Od, o Od» Od» Od» o Od, , then
a%i(d) 0y, (d) 001,,(d)  Opyy(d) 0y (d) 0y, (d)
od od o od od od o od

VF(d) = 2JTPg(d) = 0. In the vicinity of the initial point d(*), now we discuss a linear function close to the vector
function @(d). So

0, (d 0, (d o0, (d
o1 (d) = oy (@70 . a®) + 21D (g g0 Ol oy ) o
od, od, od,
0py1(d) ) Opy(d) 0 0y, (d) 0py,(d) 09y, (d)
=gy (@Vd ... a0y - ZL g0 TN g NS0 S g, g
(011( 1 2 s ) adl 1 6d2 2 + ads s + adl 1+ 6d2 2
o0, (d
Foen %Uds =C1 +and, +apd + ...+ ad;

whose approximate function is

hi(d) = Ciy +andy + andy + ... + ad;
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With the same method as the above, we can get
lia(d) = Cip + andy + andy + ... + axd,

Lim(d) = Cip + apdy + apods + . . . + Qs .
Li(d) = Co + biidy + biads + ... + bygd,

lZn(d) = CZn(,b + bnldl + bn2d2 +...+ bnsds

Then
I(d) = Ad + C (4)

Calculating the derivative of equation (4), we can get
Vi(d) = A (5)

To make F(d) = I(d)" PI(d) take the place of F(d) = ¢p(d)" Pg(d) in the vicinity of d%), we can obtain
VF(d) = 2Vi(d)" Pi(d) =0 (6)

From equations (4), (5) and (6), we can get VF(d) = 2AT P(Ad 4 C) = 0. Now let Cx = I(d¥) —A;d®
= p(dW) — Ad® and d = d®+Y), then

d* D = q® — (ATPA) T AT Pp(d™) K

in which the matrix Ay must satisfy
Ap, = Acddy (8)

where Ady = [di* — dgk)’ dZ* - dék)a = dﬁk J, A [A(Pﬁ)a A(p(lg)v . A‘/’lma A4021 >A€022 ’e A(P ] A‘/’u
= 9y (d*) — gy (d¥), A(ﬂlz = (ﬂlz(d*) (012(d(k )s A(mm P1m(d*) — (le(d(k))’ A(le = (le(d*) - (ﬂzl(d( N,
A(pg];) = 05y (d*) — 95, (dM), and Agozn = 0,,(d*) — 9,,(dY). Ady is a s x s matrix, Ag, is a (m + n) x s matrix,

d* is the current approximate value of the most optimal point, and d*) is the initial value pre-given. In general,
the rank of Ad is full. Therefore equation (8) can only determine a (m + n) X s matrix, that is

Ax = A (Ady) ™! 9)

Let

Ci = p(d®) — Ag(Ady) ' d) (10)

then the a prox1mate linear function of ¢(d) in the vicinity of d*¥) can be expressed as I(d) = Ag,(Ady)
d®)) + p(d™). So from equation (9), we can get

ATPAk [Ady)~ ]TA(p PAg(Ad)”! (11)

As the rank of Ag, is full, ATAy is a positive definite matrix. From equation (11), we can obtain

(ATPAY) ™" = Adi(Agl PAg,) ' Ad! (12)

With the method of general nonlinear least square, from equation (7) we can get

d*) = d — Adi(Ap{ PAp) " Ad{[(Ady) "] Ag{ Pp(d®) (13)
Let d¥) = d® and r =1,2..., s, then d,* = d® + (d*1) — d®))e, in which e/ = (0 0...10...0).
If hﬁk{ = (d*D —d® £ 0, Ady is a diagonal matrix, that is
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JAQ)

L s -

And the matrix Ay, can be expressed as the following

T
k k k k k k
Agp = |0 AQY . AP IAGY A . AGY)

k k k k k) 4(k k) 4(k k) 4(k
A = o)+ A ) — g AP, g (@O P )

S

k k k k k k k
—pn(@Pd . a®), e @Pdd . dY 4+ h0) — (@ dl L d®)) = (g (d® 4 ney)

N
—Cﬂll(d(k))a (911(d(k) + hgk)eZ) - (”11(d(k))a e 7(p11(d(k) + hﬁk)es) - (ﬂll(d(k))]

k
A(P(lg) = [¢12(d<k) + hgk)el) — p1(dV), gy (a™ + hg >e2) — p1p(dN), . o5 (d® + hyey) — (P12(d(k))]

AP = 91 (d® + 1P er) = 91, (@), 91, (d® + 1 es) = 91, @®), . 91 (d® + hPey) = gy, (dW))
k k
ApY) = [y (dY + Ber) — 0,0 (d®), 00 (d® + B er) — 0y (@D, 0y (AP + P eg) — gy (d¥)]

Aps) = [, (d¥ + 1 er) — 02, (dD), 90, (@D + 1 e2) — 05, (d9) ..y, (0P + BPey) — 5, ()]
Ap, can again be expressed as
Api = [0, (d® + hPer) — 9, (dY), 9,(d® + 1P er) — 9y (dV), ..., 9, (Y + hPey) — g (dW)] = Ap(a®@r®)
(13)
So
A = Api(Ady) ™ = ﬁ(col(d(“ +her) — 9, (d®)],
1

From the comparison with equation (4), we can know Ay is a matrix composed of the difference of function ¢(d),
which takes the place of the first power derivative matrix of ¢(d) in equation (4). When
hgk) = hék) =...=h® = h®, then we can get

A= [ (@ 10e1) = (@), @+ 1es) — pa(@®), g (@) 4 1es) — ()] = i Ap(a )
(15)

To substitute equation (15) into equation (11) and (7), we can get the calculating model

A — gk _ k) [A(p(d(k)h<k))TPA(p(d(k)h(k)]q - Ap(dPO RN pp(a k) (16)

which includes the difference instead of the derivative.

AVN 3/2003 101



y

Huaxue Tao, Jinyun Guo — A New Solution Model of Nonlinear Integral Adjustment Including Different Kinds of ...

2 Non-derivative calculating processes of the
nonlinear integral adjustment containing
different kinds of observing data with
different precision

Step 1: Let the iterative number k£ = 0, the initial weight
PY = P) =1 and the allowable error ¢(¢ < 0) and give
the 1n1t1a1 approximate value d(°.

Step 2: Calculate o(d® ({JT(d D), @1,(d%), .
(K

P1(dD), 12 (dV) "?(pZn(d
Step 3: Solve
WY = 0([lp(@®)]) = B(lle@®)])p € (0,1).

Step 4: Calculate Ap(d®©h®).
Step 5: Calculate d*+1),

Step 6: If ||d*+1) — d®)|| < &, d**1) is the optimal solu-
tion that satisfies the accuracy claim. Otherwise d**!)
replaces d®) and let again k = k + 1, then calculate again
the weights of two groups of observing data. First we
should calculate the square sum of residual errors of
data, then solve the variance estimate of the first group

vIpv . . .
of data ¢; = -.——. According to the variance estimate,

we can determine the weights of all kinds of observing
data, P; = PYoy/a? and P, = P|C/|V,|, in which
oo = 1. Then go to Step 2. Repeat the above processes
until the claim is satisfactory.

A new solution method to solve the nonlinear integral
least square adjustment containing different kinds of ob-
serving data with different precision is put forward in the
paper. It is an efficient and simple method. We mainly
calculate the function d®) instead of the derivative in
each iterative calculation. So the calculating load is
less. In the meantime the method is strict in theory. It
has a theoretical and practical significance and opens
up a new way to solve the nonlinear integral least square
adjustment including different kinds of data with differ-
ent precision.
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Abstract

In the construction of digital nation and the
modern deformation monitoring, different kinds
of observing values with different precision are
often collected and have the nonlinear rela-
tionship with each other. A new solution model of
nonlinear dynamic integral least square ad-
justment including different kinds of observing
data with different precision is put forward in
the paper, which is not dependent on their de-
rivatives. It is a new method to solve the non-
linear integral adjustment, which has more
scientific and practical significance.
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