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Abstract

Within the widely investigated field of forest disturbance monitoring, the detection of forest
storm damages with remote sensing techniques gained rather low attention in the last years.
This work aims to fill this gap. The project of storm damage detection, focusing on spruce
forests, was initiated by the Norwegian Forest and Landscape Institute ‘Skog og Landskap’.
The triggering event for this investigation was the storm ‘Dagmar’ from December 2011.
This storm event and its impact on spruce forests on Norway's west coast are investigated
to develop a semi-automatic storm damage detection model. For detecting storm damages,
primarily the question of adequate data pre-processing of Landsat 7 ETM+ is discussed. In
the pre-processing stage, haze reduction, image-to-image registration, atmospheric and
topographic correction are applied. The ‘“Wide Dynamic Range Vegetation Index’ (WDRVI)
is analysed and evaluated for its applicability when detecting forest storm damages. Pixel
information from known storm areas is extracted, and compared with a focus on data distri-
bution and the trend behaviour for different damage categories. A correlation was detected
between the data trend of the WDRVI and the increasing damage percentages in the forest,
showing an increase in WDRVI values for increasing damage percentages in the observed
forest stands. Therefore, the WDRVI provides the best possibilities to detect storm damages
in the study area. Through a non-linear regression analysis and ‘Partitioning Around Me-
doids’ classification (PAM), thresholds are derived from the WDRVI change image. Im-
plementing those thresholds in an ERDAS 2013 spatial model, a tool is developed, which
detects forest changes without the requirement of further user input. The only requirements
are pre-processed Landsat 7 images before and after the storm, and a defined area of inter-
est data (AOI), e.g. a vector-mask of spruce forests. Testing and evaluating the semi-
automatic detection model on a larger AOI (covering almost a whole Landsat 7 scene)
achieved an overall accuracy of 96.3% (Cohen’s KAPPA of 0.94). With very good detec-
tion results, this investigation contributes to forest management and a faster response to
storm damaged forest areas.

1 Introduction

With emphasis on forest damages caused by storm events, the research progress is rather
low compared to insect infestation and forest fire monitoring (KING et al. 2005, BAUMANN
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et al. 2013). To contribute in this specific field of forest disturbance monitoring (CARVALHO
et al. 2004, LAUSCH et al. 2013, PRADHAN et al. 2007), this study investigates storm-
damaged forests, classifies different damage severities, and aims to develop a semi auto-
mated detection model.

The study area was situated on Norway's west coast, more specifically including areas
around Sogne- and Nordfjord. Geographically its location was between 62°10'N and
61°30'N, 5°40'E and 6°50'E, and covered an area of 686000 ha. The included mountains
range from 90 m to 460 m above sea level in altitude, with slope inclinations between 5°
and 45°, orientated in all directions (N, E, S, W). The whole investigation area was de-
scribed as very diverse.

On December 26th 2011 the southern part of Norway was affected by the storm Dagmar
that caused several forest damages along Norway’s west coast. This paper describes how
those forest patches were detected using a Landsat time series and change detection. The
very diverse terrain was considered to be very challenging.

The study investigated the applicability of freely available satellite data for detecting storm
damages in spruce forests. It was investigated, which vegetation indices were most sig-
nificant for obtaining a good detection result of changes in spruce forests. Further, based on
the most suitable index, a semi-automatic detection model was built. A very crucial process
step was the pre-processing of the Landsat scenes in order to make them comparable, taking
into account how diverse and rough the landscape was. Because of the outsourced pre-
processing, the detection model was called semi-automatic. The pre-processing still needs
to be done separately because it requires too many independent specifications (Which ac-
quisition date? Which atmospheric correction? Which DEM is available? etc.). As the final
output a raster map, classified into different damage categories, was provided to the end
user. Skog og Landskap, as well as the local forest administration will later benefit from
this study, because the time demanding step of searching for and detecting storm damages
in each single forest district can be done within just a few hours.

2 Input Data and Data Processing

2.1 Landsat ETM+

From USGS.earthexplorer.gov two Landsat scenes were downloaded. Both had a one year
time difference in order to ensure equal conditions of plant phenology. The data acqui-
sitions were 8th of October 2011 and 24™ of September 2012. Both images had a cloud
cover between 25 % and 40 %, but even though the cloud cover was comparatively high,
the investigated communes were cloud free. Both Landsat scenes were under influence of
SLC-off. The commune Stryn still was affected by the inner phase-out of black lines, and
both Landsat scenes were ‘L1T’ products. The ‘Standard Terrain Correction’ included
radiometric and geometric correction via GLS2000. Further, the satellite data was provided
in UTM_WGS84 zone3IN. The whole Landsat extent did cover areas for UTM
WGS84 zone31N and UTM_WGS84 zone32N, but after clipping the satellite data to the
commune’s rectangular extent, a projection to UTM_WGS84 zone32N (EPSG code:
32632) was executed.
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2.2 Digital Elevation Model

‘Skog og Landskap’ (Norwegian Forest and Landscape Institute) provided Digital Terrain
Elevation Data (DTED10) with a resolution of 10 by 10 m, produced from vector line data
of altitude lines that were converted to a raster dataset. The altitude lines were derived from
stereo photogrammetry from aerial imagery, i.e. the Norwegian ‘AR5’ land cover map. The
DTEDI10 was necessary for applying topographic correction.

2.3 Storm Disturbance Areas

A dataset containing forest storm damage areas served as ground truth data. This dataset
was in vector format, including several polygons of known damaged areas. For each poly-
gon, an attribute table-entry with actual damage percentage of the forest patch was attached.
The dataset was produced by Torkel Hofseth, the county forester of all communes. To-
gether with the local forester of the Stryn commune, Asle Lyslo, who had been admin-
istrating the windstorm logging processes, the storm areas were mapped and digitized.
Further to the damage mapping, damage percentage classes were attached (0 — 100 % dam-
age in 10 % steps).

2.4 Forest Stand Data and Harvest Information

The forest county administration provided a shape file with all spruce and pine forest stands
of the communes Stryn, Gloppen and Sogndal. All spruce stands were extracted from this
dataset. The purpose of this dataset was to function as a clip mask in the semi-automatic
detection model. To verify if and when a forest stand had been cleared after the storm
event, information about every single stand’s clearing date for all three communes were
considered.

2.5 Vegetation Indices

Vegetation indices offer the possibility of deriving certain, specific information about the
environment from remotely sensed data, which are not clearly distinguishable or non-
visible from a simple multispectral satellite image. Using defined bands and algorithms
they support environmental monitoring in various aspects, for example in distinguishing
vegetation, vegetation- or soil moisture, and so on.

2.6 The Wide Dynamic Range Vegetation Index

The Wide Dynamic Range Vegetation Index was an enhancement of the NDVI. Reducing
the NIR band by a certain a-factor, the contrast in comparison with the NDVI was in-
creased. This made differences in vegetation more visible. An investigation by Geoffrey et
al. (2004) suggested a factor load a of 0.28 to increase the visible range over the NDVI of
33 %. (GEOFFREY et al. 2004). The same a value was applied in this study.

(a * Po.g3s — Po.660)

WDRVI =
(a * po.g3s + Po.660)
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3 Methodology

3.1 Data Pre-processing

To improve the image quality, ‘haze reduction’ was first applied. This radiometric cor-
rection was “based on a ‘tasselled cap transformation’, removing a haze correlating com-
ponent from multispectral images” (ATCOR3 2013). As result a less blurry, more contrast
full image was produced.

When investigating two images in change detection, it was required to perfectly match each
pixel’s location in both images to each other. A misregistration of 1 pixel could have led to
result errors of 50% and to 10% for 0.2 pixels (TOWNSHEND et al. 1992). The co-registra-
tion tool ‘AutoSync’ in ERDAS used one image as master on which a second image was
rectified. It automatically set ground control points in the master image and found those
ground control points in the slave image based on a certain probability threshold. To
achieve the highest possible accuracy, the panchromatic band with a resolution of 15m was
used for co-registering the images. AutoSync used 101 GCP’s, ‘affine’ as geometrical
model type for adjustment with a RMS (Root Mean Square) threshold of 0.5 and corrected
an RMS error of 0.004232, which equalled 12.7 cm.

Since the investigation area covered a very diverse terrain with slope inclinations between
5° and 45°, and slope orientations in all directions, a basic atmospheric correction (like
Dark Object Subtraction, COST or even ATCOR2) couldn’t improve the image quality in a
way that would have made the scenes comparable. ATCOR3, a built-in tool in ERDAS,
was applied to correct atmospheric and topographic effects. This step required information
about sun zenith and azimuth, calculated from acquisition date, time, and latitude/longitude
of the scene centre, and information derived from a DEM (Digital Elevation Model with 10
m resolution) for estimating slope, aspect, skyview, and shadow. Within ATCOR3, GUI
specifications for ‘used sensor settings’ were required, in this case for Landsat 7 ETM+
with the calibration file ‘17 etm template.cal’. Besides those specifications, ‘atmospheric
selections’ were set. Here the required scene visibility was automatically estimated with 59
km. For ‘aersoltype’, the ‘model for solar region’ was set to ‘rural’, ‘fall (spring) rural’,
and the ‘model for thermal region’ to ‘fall’. After executing ATCOR3, the resulting image
showed an absolute shadow removal, contrast (and thereby information) improvement, and
created an image without quality decreasing environmental and topographical influences
(such as shadows caused by mountain peaks). It must be mentioned, that for certain areas,
where the shadow influence was too high, reflectance information couldn’t be restored (For
band combination false infrared this was visible as single bright green pixel). Those small-
patched areas appeared clearly different, compared to the expected pre-processed image
outcomes, but didn't influence the investigation areas.

3.2 Change Detection

After calculating the WDRVI on the pre-processed data, the whole concept of analysing the
index was based on change detection. Generally speaking, this was “the process of iden-
tifying differences in the state of an object or phenomenon by observing at different times”
(BHAGAT 2012). ‘Vegetation index differencing’, a very simple, straightforward ap-
proach, was used as the change detection method. Calculating the difference image was
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done by subtracting the ‘later date’ image from the previous one. The results had both posi-
tive and negative values. Taking the NDVI as an example, it generally could be interpreted
as a vegetation increase for negative values and a decrease in vegetation for positive values.
Change results of zero indicated no changes. (NORDBERG et al. 2005)

3.3 Threshold Extraction

All pixel values intersecting with the storm damage data were extracted and plotted. Con-
sidering a certain variety in the data, caused by outliers and extreme values, a general in-
creasing trend was already recognizable in the boxplot (see Fig. 1).
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Fig.1:  Boxplot of dWDRVI for each damage class in 10 % steps

In order to set boundaries for different damage classes based on the high peak of the data,
the 95% quantile was applied to exclude extreme values and false pixels from the change
index.

To derive WDRVI change detection thresholds for certain damage classes, a non-linear
regression analysis was first applied. The closest fit was achieved with an exponential func-
tion. This function represented the general data trend, and was fairly good with a root mean
square error of 0.0755. The derived function was intersected into three parts, using the
partitioning around medoids classification. The intersections represented damage class
intervals (low, medium and severe damage). The derived thresholds were entered in a spa-
tial model, developed with the ERDAS 2013 Spatial Modeler.
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Fig.2: dWDRVI - Quantile (95%) for each damage class

4 Results

The thresholds, which serve as boundaries for each class are derived from one large training
area, including several (more than 100) damage patches distributed over one commune.
Applying the thresholds in the same study area on three communes achieved high detection
accuracies of 96%. The estimated thresholds represented damage classes between 20% and
43% (low damage), 43% to 68% (medium damage), and 68% to 100% (severe damage).
Table 1 shows which WDRVI change detection values described each damage class’
boundaries.

The whole process chain of the semi-automatic detection model combined the index cal-
culation, the change detection, a clip function to mask out all forest areas, and the threshold
application, to extract possibly damaged areas (see Fig. 3). The model creates a raster data
set, which is classified into three categories, and shows the damaged areas, as seen in Fig. 4.

Fig.3:  Semi automatic forest storm damage detection model in ERDAS 2013 ‘Spatial
Modeler’
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Table 1: dWDRVI Class thresholds after non-linear regression analysis and partitioning
around medoids classification

Class THR low THR high dam % low dam % high
1 0.044 0.292 20 43.26

2 0.293 0.536 43.27 68.83

3 0.537 0.738 68.84 100

Detection Results of first AOI
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Fig. 4:  Example of detection results, with aerial imagery in the background; numbers
within the colored areas represent the damage class of the ground truth data set
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108 detected areas were chosen and verified in a field verification process. They provided
the basis of how accurate the semi automatic detection algorithm worked. The final accu-
racy assessment based on this process resulted in an overall accuracy of 96.3 % and
Cohen’s Kappa of 0.94 (Table 2), which were very good and highly accurate outcomes.

Table 2: Accuracy Assessment after Field Verification of Detection Results

Classification Class 1 Class2 Class 3 Row Total
Class 1 26 0 0 26
Class 2 0 48 0 48
Class 3 0 0 30 30
Column Total 29 49 30 108

Overall Accuracy 96.30 %

Cohen’s KAPPA 0.94

5 Conclusion and Outlook

For applying an analysis based on a change detection, which compares two images that
cover the same location at a different time, most attention must be placed on precise data
pre-processing. This data normalization is the key element in a possible operational applica-
tion of this model, to increase the detection accuracy and reliability. However, this study
was performed to investigate the feasibility of a detection of storm damages in spruce for-
ests. The results were very promising, but applying this semi-automated detection model to
different Landsat Scenes and Sensors (Landsat 8 operates without black lines in the image,
like found for Landsat 7), different forest types, and tree species, is recommended to make
the model more robust. A following, scheduled study will investigate more areas, and pro-
vide a fully open source operating Python script.
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