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Abstract 

Contemporary Airborne Light Detection and Ranging (LiDAR) systems are capable to 
rapidly gather the data from large geographical areas with high precision and great density. 
As a result, obtained datasets can contain several tens of millions of points, making LiDAR 
data compression an important issue. In this paper, three domain-specific compression 
algorithms are compared against a general-purpose algorithm. Selected testing LiDAR 
datasets are derived from the practice to challenge common data compression issues. In this 
way, influences of the terrain type, point density, and number of contained points on the 
compression efficiency are studied. 

1 Introduction 

In the past decade, Light Detection and Ranging (LiDAR) has become one of the prime 
remote sensing technologies (LIU 2008). LiDAR systems are active sensor systems that use 
a short wavelength laser light to rapidly obtain information about the distant objects with 
high precision and great density. The range is obtained with measuring time delay between 
transmission of the laser pulse and detection of its reflection (MANUE 2008).  

Different types of LiDAR systems exist. For spatial data acquisition, airborne LiDAR 
systems are used most frequently. In this case, the LiDAR data scanner is mounted on an 
aircraft, from where it records the Earth’s surface, as shown in Figure 1. Several 
supplementary sensor systems are used to georeference the data. Inertial measurement unit 
(IMU) is used to establish an angular orientation of the sensor system by measuring the roll, 
pitch and heading of the aircraft (MANUE 2008). Additional scan angle measurement 
defines an angular orientation of each emitted laser pulse that allows mapping the range 
measurement into 3D point coordinates. Finally, global positioning system (GPS) is used to 
define the position of the LiDAR scanner that is used to project the point coordinates into a 
local (e.g. Gauss-Krüger coordinate system), or a global geographic coordinate system (e.g. 
Universal Transverse Mercator coordinate system). Additionally, many systems include a 
digital camera to capture photographic imagery of the terrain that is being scanned to obtain 
points’ colours.  

Today, airborne LiDAR systems are capable of executing over 150.000 measurements per 
second, where achieved density exceeds 10 points per square meter (MANUE 2008). 
Additionally, they are able to distinguish between different reflections of a single emitted 
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laser pulse that allows them to penetrate through vegetation coverage and record the terrain 
under it. However, this results in a huge datasets that may contain several tens of millions 
of points. They are usually stored in LAS files, an open standard binary file format 
proposed by the American Society for Photogrammetry & Remote Sensing (ASPRS 2009). 
The main aim of the LAS format is to assure the standard exchange of captured LiDAR 
data. Although the LAS file format prescribes different point record types, at least 160 bits 
per point are used. Consequentially, LAS files may consume more than a gigabyte per 
square kilometre. In practice, this presents considerable problems. Expensive storage, 
difficult distribution to the users and time consuming exchange over the internet are just 
some of the reasons why LAS data compression has recently become an important issue. 

 

Fig. 1: Airborne LiDAR data acquisition 

In this paper, a comparison between a general-purpose compression algorithm and three 
domain-specific compression algorithms is presented. Approaches for geometrical (LiDAR) 
data compression are explained in Section 2. In Section 3, the results of testing algorithms 
are presented, while Section 4 concludes the paper. 
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2 Algorithms for LiDAR data compression 

Data compression is among the oldest disciplines in computer science, and is highly related 
with the information theory and the pioneering Shannon's works in late 1940s and 1950s 
(SHANNON 1948; SHANNON 1951). A huge number of various compression algorithms have 
been developed since then (SALOMON 2006). The most general classification of data 
compression methods distinguishes between lossless and lossy methods. After 
decompression, lossy methods cannot retrieve the original data. Because of this, they are 
usually applied on multimedia data (e.g. digital images, audio, and video). The loss of 
information is practically not detected due to the imperfection of human senses. On the 
other hand, many applications cannot afford the losses in the data compression process (e.g. 
text, medical data, engineering, and scientific data), and therefore, lossless algorithms have 
to be applied. The lossless compression methods are based either on dictionary-based 
approaches (e.g. LZW proposed in WELCH 1984) or on statistic methods (e.g. Huffman 
coding (HUFFMAN 1952), arithmetic coding (RISSANEN & LANGDON 1979)). In practice, 
these methods are frequently combined in various packages (such as PKZIP, RAR, etc. 
widely used today. However, these methods are general-purposed and do not employ 
application-specific knowledge about the data. For compression of specific data, the 
characteristic patterns can be exploited to predict the composition of the forthcoming data, 
which can be compressed with considerably greater efficiency. Such methods have been 
developed, for example, for triangular meshes (ISENBURG et.al. 2005), voxel data 
(KLAJNŠEK & ŽALIK 2005), and XML files (LUOMA & TEUHOLA, 2007). Airborne LiDAR 
data are gathered according to the flight plan and regular movement of the laser beam 
(MANUE 2008). Therefore, it can be expected that an efficient prediction model can be 
developed. In continuation, a brief description of the only publically available algorithm 
among the tested ones is given (details can be found in MONGUS & ŽALIK (2011)).  

In Figure 2, a schema for LiDAR data compression is shown, consisting from three 
consecutive steps:  

1. Points are encoded with a predictive coding scheme. 
2. Prediction errors are coded with the variable-length-coding (VLC). 
3. VLC values are compressed with the arithmetic coder (AC) and stored in the output 

file. 

In the predictive coding model, the history of points is analysed to predict the position and 
associated scalar values of the next point in the data stream. Since the same predictions can 
be obtained during the decoding process, only prediction errors need to be stored. Thus, 
accurate predictions lead to a high reduction of absolute values that can be stored more 
efficiently. However, different prediction rules are used due to different nature of the 
attributes. The constant prediction rule presumes that the next attribute value is the same, as 
the current one. Thus, it is efficient for coding attributes that rarely changes (e.g. scan 
direction flag, user data, point source ID, and number of returns). On the other hand, some 
of LiDAR point attributes are never the same for two successive points (e.g. GPS time of 
recording). In this case, linear interpolation of previous values is used to estimate the 
prediction for the next point attribute value. Thus, linear predictive coding is highly 
accurate when values change for a constant quantity. Unfortunately, LiDAR points are 
usually not uniformly distributed and more complex prediction rules must be used to 
achieve adequate accuracy. MONGUS & ŽALIK (2011) presented an accurate prediction rule 
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for estimating the points’ positions that exploits geometric correlation arisen from LiDAR 
data scanning. 

 

Fig. 2:  A schema for lossless LiDAR data compression 

Errors in the prediction can be stored with fewer bytes and therefore, they can be 
represented with a variable-length code (VLC). Four description bits are assigned to each 
error value. The description bits define the sign and the length (in bytes) of each value. The 
error values (they are usually small) are therefore stored with the minimal number of bits. 
The stream of error values bits and the associated description bits are finally compressed by 
AC. 

3 Results 

The efficiency of three domain-specific compression algorithms (LASCOMPRESSION 2011; 
LASZIP 2011; LIDAR COMPRESSOR 2011) and a general-purpose open-source compression 
algorithm (7-ZIP 2011) have been evaluated. The testing datasets were carefully selected 
and consisted of LAS files of various sizes, point density, and representing most 
characteristic terrain types. Each terrain type is presenting different problems for 
compression algorithms.  

Table 1:  Testing datasets for comparison of compression algorithms 

File File Size (bytes) Terrain 
Type 

Number 
of Points 

Density 
(points/m2) 

Bits per 
point 

  1 952.000.229 Flat 34.000.000  0,925 224 
  2 440.056.349 Flat 15.716.290  0,881 224 
  3 104.088.465 Flat 3.717.437  0,890 224 
  4 812.916.053 Hill 29.032.708  5,317 224 
  5 386.589.873 Hill 13.806.773  4,236 224 
  6  65.734.205 Hill 2.347.642  6,890 224 
  7 429.180.001 Watered 15.327.849 16,540 224 
  8 988.974.481 Watered 35.320.509  0,679 224 
  9 375.167.329 Watered 13.398.825 14,110 224 
10 104.639.368 Urban 3.737.102  0,413 224 
11 537.088.209 Urban 20.657.230 30,296 208 
12 179.510.973 Urban 6.411.098  0,900 224 

Flat terrain present the most basic problem, which is very promising for compression, since 
a high level of redundancy is contained (e.g. the points are almost aligned with the grid and 
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the heights are similar). Because compression algorithms reduce storage requirements by 
removing the redundancy within the data, high level of efficiency is expected in this case. 
On the other hand, hilly terrains (Figure 3) are less favourable for data compression mainly 
because the point density is inconsistent throughout the files. Point density is depended on 
the exposure of the slope to the LiDAR scanner, where the density on exposed slopes is 
significantly higher than in case of shaded slopes. Because of this, points are not regularly 
distributed and their heights distinctively differ. Less accurate prediction schemas are 
expected in this case.  

 

Fig. 3:  Hilly terrains present greater problems for compression because of incon-
sistencies of point density in the data set 

A similar problem is noticed in the case of urban areas (Figure 4), since buildings disrupt 
the even height arrangement of points. In addition, height differences between nearby 
points may vary because of a large number of different sized objects (e.g. cars, buildings). 
Because each object causes a discontinuity in point distribution, the prediction schemas are 
challenged. Another type of difficulties for compression algorithms may cause datasets 
containing weak reflections (Figure 5) as a consequence of scanning watered areas (e.g. 
rivers, lakes). In this case, the reflections are not properly detected, causing large gaps in 
point distribution presenting further difficulties to efficiently predict the positions of the 
upcoming points.  
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Fig. 4:  Urban areas cause abrupt differences in point distributions, as well as great 
variations of point height, making the prediction less effective 

 

Fig. 5: Watered areas cause discontinuities in the point sets, reducing the efficiency of 
the prediction 

In Table 2, the results achieved by compression algorithms over the testing dataset are 
presented.   

 



D. Mongus, B. Rupnik and B. Žalik 78 

Table 2:  Testing datasets for comparison of compression algorithms 

 
 

File 

LAS Compression LASZip LiDAR 
Compressor 

7-Zip 

Compression
Ratio (%) 

Bits per 
point 

Compression
Ratio (%) 

Bits per 
point 

Compression
Ratio (%) 

Bits per 
point 

Compression 
Ratio (%) 

Bits 
per 

point 

  1 10,8 24 11,1 25 27,9 63 21,0 47 

  2 9,6 22 10,0 22 26,7 60 20,3 45 

  3 9,3 21 9,51 21 26,0 58 20,0 45 

  4 15,9 36 17,3 39 32,5 73 26,1 59 

  5 14,2 32 16,0 36 31,5 71 25,0 56 

  6 15,7 35 17,2 39 16,3 37 25,0 56 

  7 16,5 37 18,0 40 32,7 73 24,1 54 

  8 16,0 36 15,7 35 32,9 74 26,5 59 

  9 16,2 36 17,3 39 32,1 72 23,5 53 

10 16,2 36 14,6 33 35,8 80 38,2 86 

11 18,0 38 22,8 47 21,1 44 26,1 54 

12 11,8 26 12,0 27 30,0 67 22,0 49 

Avg. 14,2 31,6 15,1 33,6 28,8 64,3 24,8 55,3 

As seen in Table 2, average compression ratios achieved by domain-specific algorithms 
highly differ. Although LiDAR Compressor is domain-specific algorithm, it is still 
outperformed by a general-purpose 7-Zip algorithm. Even more, comparable domain-
specific LASCompression algorithm is capable to further increase a compression ratio by a 
factor two, while it is being closely followed by LASZip. When comparing bits-per-point 
(BPP), a reduction of nearly 200 BPP can be expected in case of LASCompression. Figure 6 
shows the variations of bits per point achieved by different algorithms. 

Although performance of 7-Zip only slightly depends on the terrain type, the effect on 
domain-specific algorithms is much more noticeable. LAS Compression excels at flat 
terrain types, where prediction schema is much more accurate. The compression ratio 
achieved is on average around 10%. LASZip is slightly less effective, except in cases where 
the points are stored in lesser density – density presenting the average number of points per 
square meter. LAS Compression is not significantly affected by different point densities. 
Lizardtech’s LiDAR Compressor and 7-Zip produce poorer results.  

Compression ratios decrease when compressing other terrain types as mentioned earlier. 
LASCompression still prevails, compressing more problematic terrain types on average to 
around 16% and reducing the bits per point to around 35. Again LASZip follows closely 
with LiDAR Compressor and 7-Zip not reaching efficient compression ratios. 

4 Conclusion 

In this paper we compared different algorithms for compressing LiDAR data. There are 
efficient algorithms available (LASCompression, LASZip) that can greatly reduce the spatial 
requirements of LiDAR data. The results of LASCompression and LASZip indicate that the 
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Fig. 6:  Comparison of bits per point needed for storing one point in compressed files 

efficiency of their compression is in tight correlation with different terrain types and also 
somewhat with density of points.  

Flat terrains provide a better opportunity for effective compression, while urban areas and 
riversides present distributions of points that are managed with greater difficulty. 
Furthermore, LASZip performs better with a lower point density, while LASCompression 
performs similarly effective regardless of density. By its disposition the general-purpose 
compression algorithm 7-zip does not rely on any geometric factors for compression and is 
thus basically independent of terrain types or point density.  

LiDAR Compressor, though claimed to be intended for LAS file compression, does not 
seem to take advantage of geometric coherence of LiDAR data. The results of its 
compression are not comparable to other algorithms, as it is outperformed even by the 
general-purpose compression algorithm. 
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