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Abstract: In urban environments, roadside vegetation provides important ecosystem services. Reliable 
and up-to-date information on urban vegetation is therefore needed as a basis for sustainable urban 
design and regular tasks such as vegetation maintenance. Mobile laser scanning (MLS), i. e., the use of 
vehicle-mounted laser scanners, offers strong potential for capturing 3D point clouds of road environ-
ments on a large scale at a low cost. In this paper, the potential and challenges of using MLS for vege-
tation mapping are discussed. To lay a foundation for MLS-based inventories of roadside vegetation, a 
concept for the automatic detection and analysis of vegetation in MLS point clouds using deep learning 
is presented. The proposed workflow covers vegetation detection and classification, delineation of in-
dividual trees, and estimation of tree attributes. In a case study, an initial implementation of the work-
flow is tested using MLS datasets from two German cities and the results are evaluated through visual 
inspection. It is demonstrated that the proposed deep-learning approach is able to detect and classify 
vegetation in MLS point clouds of complex urban road scenes. When delineating individual trees, ac-
curate results are obtained for solitary trees and trees with little canopy overlap, while the delineation 
of trees with strongly overlapping canopies needs further improvement in some cases. The results indi-
cate that geometric tree attributes such as tree height and trunk diameter can be accurately estimated 
from MLS point clouds if the accuracy of the preceding processing steps is sufficiently high. 
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1 Introduction 

In urban environments, roadside vegetation provides important ecosystem services, including 
sequestering carbon, mitigating air pollution, regulating microclimate, providing habitat, and 
promoting human well-being (SÄUMEL et al. 2016). Urban trees also help mitigate the effects 
of climate change through local cooling and stormwater absorption (PATAKI et al. 2021). 
Therefore, maintaining and expanding roadside vegetation is essential for sustainable urban 
development. Reliable and up-to-date information on urban vegetation is needed to guide the 
design of urban green spaces toward the provision of ecosystem services (ELDERBROCK et al. 
2020) and to develop appropriate green space management programs (SCHIPPERIJN et al. 
2005). Many municipalities, especially in North America and Europe, therefore, conduct in-
ventories of public green spaces. These inventories often focus on surveying individual trees, 
i. e., mapping the location of individual trees, and collecting tree attributes such as tree spe-
cies, height, and trunk diameter (MA et al. 2021). Since manual vegetation inventories are
costly and time-consuming, the use of LiDAR systems (Light Detection and Ranging) for
automated or semi-automated vegetation mapping has become an important research topic.
These systems capture the environment in the form of high-resolution 3D point clouds and
can be used with various acquisition platforms. The acquisition can be categorized as terres- 
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trial laser scanning (TLS) with tripod-mounted laser scanners, personal laser scanning (PLS) 
with handheld or backpack-mounted laser scanners, mobile laser scanning (MLS) with vehi-
cle-mounted laser scanners, unmanned aerial vehicle-borne laser scanning (UAV-LS), and 
airborne laser scanning (ALS). Compared to TLS, PLS, and UAV-LS, the use of vehicle-
mounted laser scanners significantly reduces the acquisition effort, while providing 3D point 
clouds with higher resolution and fewer occlusions than ALS. Because of these characteris-
tics, MLS is a well-suited technology for the large-scale mapping of roadside vegetation and 
thus could become a complement or alternative to conventional vegetation surveys. Com-
pared to conventional field surveys, MLS-based vegetation mapping would reduce labor and 
cost, while providing a richer, three-dimensional representation of vegetation. To realize the 
potential of MLS for vegetation mapping, an automated approach is needed to derive seman-
tic information about vegetation from raw 3D point clouds. To lay a foundation for building 
such a system, this paper presents a general concept for the automatic detection and analysis 
of vegetation in MLS point clouds. In contrast to previous work, the proposed workflow 
builds on a modern deep-learning approach for 3D point cloud segmentation. In a case study, 
an initial implementation of the proposed workflow is tested on MLS datasets from two cities 
and first results are provided. 

2 Potential of MLS-Based Vegetation Inventory 

Compared to conventional field surveys, MLS-based vegetation inventories would provide 
several advantages: First, the labor and cost of vegetation surveys would be reduced, allowing 
larger areas to be mapped and vegetation inventories to be updated more frequently (e. g., 
quarterly to cover all seasons). Second, capturing vegetation in the form of 3D point clouds 
would provide additional and more detailed data on urban vegetation. For example, shrubs 
and hedges could be mapped, which are not recorded in most conventional vegetation surveys 
despite their ecological value and aesthetic impact. Furthermore, conventional tree invento-
ries usually only capture a limited number of tree attributes (ÖSTBERG et al. 2013). Using 3D 
point clouds, additional geometric tree attributes such as trunk orientation or crown volume 
could be captured (HERRERO-HUERTA et al. 2018). 3D point clouds could even be used to 
model the entire branching structure of trees (DU et al. 2019). Overall, the data collected in 
MLS-based vegetation inventories could be used to build comprehensive tree information 
models, as proposed by SHU et al. (2022). Such information models would address the infor-
mation needs of a wide range of stakeholders, including city officials, arborists, ecologists, 
and landscape architects. For landscape architects, information derived from MLS-based 
vegetation inventories could be particularly useful for the following applications: (1) At the 
beginning of the design process, more detailed plant models could be created to enable a 
more accurate representation and analysis of existing vegetation. While generic plant models 
have been commonly used to visualize vegetation (OEHLKE et al. 2015), plant models derived 
from 3D point clouds could be used to create more realistic visualizations of vegetation. 
Moreover, plant models derived from 3D point clouds could also be used to estimate the 
ecosystem services and disservices provided by existing vegetation. For example, the shading 
provided by trees could be modeled, or the carbon storage and oxygen release potential of 
vegetation could be estimated (SCHOLZ et al. 2018). (2) Conducting MLS-based vegetation 
surveys on a regular basis could also provide ground truth data for building and validating 
simulation models of plant growth (WHITE et al. 2022). More accurate simulation of plant 
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growth would support decisions between different planting regimes in the design of green 
spaces. (3) Once a certain planting regime has been established, MLS could be used to con-
tinuously monitor the green space (e. g., growth and condition). In this way, design decisions 
could be evaluated, and vegetation maintenance measures could be planned and aligned with 
the design goals. 

3 Challenges in MLS-Based Vegetation Inventory 

While MLS offers significant potential for the large-scale mapping of roadside vegetation, 
several challenging data characteristics must be considered when developing systems to au-
tomatically process MLS point clouds for vegetation mapping: 

Large data volume: MLS produces large amounts of data with hundreds of points per square 
meter. To be able to process MLS point clouds of large road segments or entire city districts, 
all processing steps must be automated and implemented efficiently. This requires algorithms 
that allow parallel processing with modern multicore systems or graphics cards. 

Varying point density: The point density of MLS point clouds depends on the scanner type, 
the acquisition speed, and the distance to the scanner trajectory. Systems for processing MLS 
point clouds must therefore be robust to varying point densities. 

Occlusions: In MLS point clouds, vegetation may be completely or partially occluded by 
other objects. The algorithms for detecting and analyzing vegetation in MLS point clouds 
must therefore be able to cope with incomplete data, i. e., 3D point clouds that cover only a 
part of the surface.  

Limited per-point attributes: Most LiDAR systems provide the 3D coordinates and reflec-
tion intensity for each scanned point. More advanced systems can capture additional attrib-
utes such as surface color (e. g., from panoramic images), temperature, or humidity. To sup-
port a wide range of scanner types, however, algorithms for vegetation detection and analysis 
should only rely on point coordinates and reflection intensity as input attributes. 

Integration of multi-temporal MLS data: Approaches for storing and processing multi-
temporal MLS data are needed to enable continuous vegetation monitoring. Since inaccura-
cies can occur in the georeferencing of MLS point clouds, techniques for co-registering 
3D point clouds from different acquisition runs are needed. In addition, approaches are 
needed to increase the coverage and merge redundant information from MLS point clouds 
acquired at different times and to identify areas that have changed between acquisition runs.  

4 A Concept for the Detection and Analysis of Vegetation in 
MLS Point Clouds Using Deep Learning 

In the following, a concept for the automatic detection and analysis of vegetation in MLS 
point clouds is presented. The proposed workflow is divided into three steps: (1) In the first 
step, deep-learning models are used to extract vegetation points from raw MLS point clouds 
and classify them into different vegetation types. (2) In the second step, the tree points de-
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tected by a deep-learning model are segmented into individual trees. (3) Using the point 
clouds of individual trees, tree attributes such as tree height and trunk diameter are derived. 

4.1 Detection and Classification of Vegetation 
Besides vegetation, urban MLS point clouds contain a variety of other objects such as city 
furniture, vehicles, and buildings. An automated approach is required to segment 3D point 
clouds of such complex scenes into vegetation points and non-vegetation points. In addition, 
different vegetation types, such as low vegetation and trees, need to be distinguished. 

4.1.1 Related Work 

While the present work aims to detect both low vegetation and trees, most previous work has 
focused on tree detection in MLS point clouds. To segment urban MLS point clouds into tree 
points and non-tree points, many works use either rule-based approaches (HAO et al. 2022, 
HUI et al. 2022) or statistical machine learning approaches (WEINMANN et al. 2017, CHEN et 
al. 2019). While rule-based approaches are usually not able to detect other vegetation types 
than trees and are often very dataset-specific, statistical machine learning approaches often 
lack the capability to combine geometric features of different spatial scales. The recent work 
of CHEN et al. (2021) is among the first to use a deep-learning approach for vegetation detec-
tion in urban MLS point clouds. However, the PointNLM architecture proposed in their work 
is trained on hand-crafted geometric features of supervoxels and does not yet exploit the full 
potential of recent deep-learning architectures for 3D point cloud segmentation. 

4.1.2 Methodology 

 
Fig. 1: Overview of the deep-learning approach used in this work (C = number of semantic 

classes, D = number of point attributes, N = number of points in large-scale point 
cloud, N’ = number of points in downsampled, large-scale point cloud, Nsmall = num-
ber of points in small-scale point cloud). 

In general, deep-learning architectures for processing 3D point clouds can be divided into 
architectures that operate on intermediate representations of point clouds such as 2D images 
or 3D voxel grids, and architectures that process point clouds directly (BELLO et al. 2020). 
Our workflow is built upon architectures that process 3D point clouds without intermediate 
representations. These architectures usually are more efficient than architectures that use in-
termediate representations and are designed to self-learn geometric features at different spa-
tial scales. Recent examples of such architectures include KP-FCNN (THOMAS et al. 2019), 
a fully convolutional neural network (FCNN) based on a kernel-point (KP) convolution, and 
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RandLA-Net (HU et al. 2020), “an efficient and lightweight neural architecture to directly 
infer per-point semantics for large-scale point clouds” based on random sampling (Rand) and 
local feature aggregation (LA). In our implementation, the KP-FCNN Rigid architecture is 
used. Different variants of this architecture exist, targeting different processing tasks such as 
classification or semantic segmentation of 3D point clouds. In this work, the detection of 
vegetation in MLS point clouds and its classification into different vegetation types are mod-
eled as a single semantic segmentation task. To this end, models are trained to distinguish the 
following classes: 

Low vegetation includes all types of low vegetation, e. g., shrubs, hedges, and potted plants. 

Tree trunk includes tree trunks, defined as the segment ranging from the base of a trunk to 
the first branching. 

Tree branch includes the main branches of a tree that are not covered by foliage. 

Tree crown includes tree foliage and the branches and twigs covered by it.  

Other includes all non-vegetation points, e. g., ground, buildings, and city furniture. 

This classification scheme is more fine-grained than the classification schemes used in pre-
vious studies. Segmenting trees into trunk, branch, and crown areas provides additional se-
mantic information that can be used to delineate individual trees and estimate certain tree 
attributes. However, the proposed classification scheme also requires more detailed ground 
truth annotations to train deep-learning models, which increases the annotation effort. 

Since large-scale MLS point clouds usually contain millions of points, they cannot be pro-
cessed as a whole by deep-learning models. Therefore, our workflow includes two prepro-
cessing steps to prepare raw MLS point clouds for processing by deep-learning models (Fig-
ure 1). First, the resolution of the large-scale point clouds is reduced by grid subsampling. 
Subsequently, small subsections of fixed size (4 m radius, 4096 points) are sampled from the 
downsampled large-scale point clouds. These small-scale point clouds are processed by the 
deep-learning model. The model predictions are mapped to the large-scale point clouds and 
are interpolated for points that were not covered by the small-scale point clouds. 

4.2 Delineation of Individual Trees 
The deep-learning approach described in the previous section performs point-wise segmen-
tation, where each point is assigned to a semantic class. However, for points that are classified 
as tree points, the deep-learning approach does not provide information about which individ-
ual tree a point belongs to. Therefore, an additional processing step is required to segment 
the tree points identified by a deep-learning model into individual trees. Especially in areas 
with high tree density and overlapping tree canopies, delineating individual trees can be a 
challenging task. 

4.2.1 Related Work 

In previous work, different algorithms have been proposed to delineate neighboring trees 
with overlapping crowns, including graph-based approaches (ZHONG et al. 2017), clustering 
approaches (LI et al. 2021), and region growing approaches (LI et al. 2016). Some of these 
approaches rely on the correct detection of tree trunks and are therefore not robust to occlu-
sions and misclassifications of tree trunks. Additionally, many algorithms for delineating in-
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dividual trees are based on voxel representations of 3D point clouds, which limits their accu-
racy. 

4.2.2 Methodology 

To improve robustness to incomplete data and achieve more accurate segmentation of over-
lapping tree canopies, we propose a multi-step approach to delineate individual trees. The 
proposed approach is inspired by several previous works (WU et al. 2013, ZHONG et al. 2017, 
XU et al. 2020, YANG et al. 2020) and consists of the following steps: 

1) Identification of tree locations: In the first step, the locations of individual trees are 
identified. To improve robustness against incomplete data, tree trunks, main branches, 
as well as treetops are considered for identifying tree locations. To identify tree locations 
based on tree trunks and main branches, trunk and branch points identified by the deep-
learning approach are clustered using the DBSCAN algorithm (ESTER et al. 1996). Ad-
jacent clusters with similar growth direction are merged and the midpoints of the remain-
ing clusters are used as approximate tree locations. To identify tree locations based on 
crown tops, a 2D canopy height model is constructed and searched for local maxima. 
The positions of local maxima whose distance from the already found tree locations is 
above a threshold are added to the set of tree locations. 

2) Coarse delineation of individual trees: The tree locations obtained in the previous step 
are used to determine the coarse boundaries of the individual trees and to identify regions 
with overlapping tree canopies. Different algorithms can be used for this purpose, e. g., 
2D Voronoi segmentation can be performed (ZHONG et al. 2017), or a canopy height 
model can be constructed and segmented using the 2D marker-controlled Watershed al-
gorithm (KORNILOV & SAFONOV 2018). For the implementation in this work, a combi-
nation of both algorithms is used. 

3) Refined delineation of overlapping tree canopies: If the coarse tree delineation indi-
cates that two trees are close to each other, their canopies may overlap. In such cases, 
the segmentation of the tree canopy is refined. Different approaches can be used to de-
lineate trees with overlapping canopies, including graph-based approaches, clustering 
approaches, or region growing approaches. Our workflow uses a region growing ap-
proach since it reflects the natural growth direction of trees and allows the delineation of 
trees with different shapes. Specifically, we implement a custom, density-based region 
growing algorithm that is inspired by the DBSCAN algorithm (ESTER et al. 1996). In 
this algorithm, for each tree to be processed, a set of seed points is selected (i. e., points 
that belong to the tree with a high degree of certainty). In an iterative process, neighbor 
points of the seed points are assigned to the respective tree, if they have not yet been 
assigned to another tree. Neighbor points that satisfy the core point criterion as defined 
in the DBSCAN algorithm (ESTER et al. 1996) become seed points themselves. To en-
sure that neighboring trees grow evenly, points are sorted according to their distance 
from the crown boundary determined during coarse tree delineation and processed in 
that order. 

4) Removal of implausible trees: In the final processing step, trees with implausible shape 
or size are discarded. Specifically, trees with few points and trees whose height is below 
a threshold are filtered out. 
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4.3 Estimation of Tree Attributes 
After obtaining point clouds representing individual trees, different tree attributes can be es-
timated. Most existing studies focus on the estimation of geometric tree attributes (HERRERO-
HUERTA et al. 2018, WU et al. 2013, XU et al. 2020), while few authors also derive non-
geometric attributes such as tree species or vitality (WU et al. 2018, CHEN et al. 2019). Since 
3D point clouds are particularly suitable for deriving geometric tree attributes, we also focus 
on these attributes. However, algorithms for estimating non-geometric tree attributes such as 
tree species, carbon storage capacity, or oxygen release potential may be integrated into the 
workflow in the future. For the estimation of the attributes tree location (WU et al. 2013), tree 
height, trunk direction, crown width (HERRERO-HUERTA et al. 2018), trunk diameter at breast 
height (CHEN et al. 2019), and crown volume (LI et al. 2020), we adopt the approaches used 
in previous work. Other tree attributes, namely under-branch height, and crown base height, 
can directly be derived from the deep-learning-based segmentation of trees into trunk, 
branches, and crown. 

5 Case Study 

A test application was implemented to demonstrate the potential of the concept presented in 
this paper. MLS point clouds collected in the cities of Essen, Germany, and Hamburg, Ger-
many, were used to evaluate the test application. The point clouds were acquired using Trim-
ble MX8 scanners in the leaf-on season. We manually annotated the point clouds and split 
them into a training set, a validation set, and a test set. In the following, some preliminary 
results for the test set are shown. 

Figure 2 shows exemplary results of the deep-learning-based vegetation detection and clas-
sification. As can be seen there, large portions of the vegetation are segmented correctly. 
However, several smaller segmentation errors can be identified: In multiple cases, low veg-
etation and tree crowns are confused. In addition, some pole-like objects are misclassified as 
trees. There are also a few cases in which tree trunks are missed by the deep-learning model. 

Results of the delineation of individual trees are shown in Figure 3. While solitary trees and 
adjacent trees with little canopy overlap are correctly delineated in most cases, the results for 
the delineation of trees with strongly overlapping canopies are mixed. Trees whose crown 
has a large extent are over-segmented in several cases, and some parts of tree crowns with 
low point density are missed by the region growing algorithm. 

Figure 4 shows some results of the estimation of tree attributes. As can be seen there, accurate 
estimates of geometric tree attributes are obtained if the accuracy of the preceding processing 
steps is sufficiently high. When large parts of a tree are missed during tree segmentation, 
attributes such as tree height, crown width, and crown volume are often underestimated. In 
cases where multiple trees are recognized as a single tree, the crown width and crown volume 
are often overestimated. 
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∎ Low vegetation        ∎ Tree trunk        ∎ Tree branch        ∎ Tree crown 

Fig. 2: Results of deep-learning-based vegetation detection and classification for a point 
cloud from the test set that was acquired in Hamburg, Germany. The images on the 
left show the ground truth annotation and the images on the right show the predic-
tion. Some areas with classification errors are outlined in red. 

    
Fig. 3: Results of delineating individual trees in a point cloud from the test set that was 

acquired in Essen, Germany. The image on the left shows the ground truth annota-
tion and the image on the right shows the result of the algorithmic delineation of 
individual trees. Points belonging to the same tree are shown in the same color. 

    
∎ Height ∎ Trunk direction ∎ Under-branch height ∎ Crown base height ∎ Trunk / crown diameter 

Fig. 4: Example results of the estimation of tree attributes 
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6 Discussion and Conclusion  

In this work, a concept for the automatic detection and analysis of vegetation in MLS point 
clouds has been presented. The implementation of the concept produced promising results 
for representative MLS point clouds from two cities. However, to approach the accuracy of 
manual vegetation mapping, the method needs to be further improved. Since the accuracy of 
vegetation detection and classification affects the accuracy of the following processing steps, 
further improvement of the deep-learning approach for vegetation detection and classifica-
tion would be of major benefit. Despite this need for improvement, the preliminary results of 
this work suggest that the proposed deep-learning approach can detect and classify vegetation 
in complex street scenes that would be difficult to model using rule-based approaches. How-
ever, this comes at a price: The training of deep-learning models requires extensive annotated 
training data and high computing power of graphics hardware. To improve the practicality of 
the approach, techniques to reduce the labeling effort (e. g., active learning or transfer learn-
ing) and improve model speed (e. g., model pruning) could be incorporated into the work-
flow. 

While the test application presented in this paper was limited to capturing geometric tree 
attributes, it would be desirable to derive even richer tree information models to cover a 
broader range of use cases. For example, detailed models of tree branching structures could 
be derived from 3D point clouds to enable estimation of aboveground biomass and carbon 
storage capacity, as well as realistic vegetation visualization. Furthermore, it would be useful 
to integrate approaches for processing multi-temporal MLS data into the workflow. In this 
way, point clouds representing vegetation in leaf-on and leaf-off conditions could be com-
bined. Capturing vegetation in leaf-off conditions would avoid the occlusion of woody com-
ponents by foliage and thus facilitate the acquisition of woody biomass and the delineation 
of individual trees. In addition, approaches for predicting non-geometric tree attributes such 
as tree species and tree vitality could also be integrated into the workflow, e. g., by combining 
3D point clouds with spectral data from panoramic images or aerial photographs. 

Since MLS is a cost-effective method to survey very large areas, the present work focused 
on vegetation mapping using MLS. However, MLS is only suitable for capturing vegetation 
in the proximity of drivable roads, while PLS or UAV-LS are more suitable for mapping 
vegetation in parks or private gardens. To provide a complete mapping of urban vegetation, 
the concept presented in this work should be transferred to other LiDAR platforms. Since 
PLS point clouds have similar characteristics to MLS point clouds and a generic deep-learn-
ing approach is used in this work, transferring the approach to PLS point clouds should be 
possible with little effort. 

Building on the concept presented in this paper, a data processing tool could be developed 
for large-scale and cost-effective urban vegetation mapping. Such a tool would enable con-
tinuous monitoring of urban vegetation and thus provide a basis for sustainable design and 
maintenance of urban green spaces. In particular, it would enhance the study of ecosystem 
services provided by urban vegetation and could thus help to guide the design of urban green 
spaces towards the provision of ecosystem services. 
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