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Abstract: In this paper, we examine potential applications of Neural Radiance Fields (NeRF) in the 
field of landscape architecture. NeRF is a state-of-the-art method for novel view synthesis and volu-
metric scene reconstruction based on real-world training data. Our paper addresses NeRF and its de-
rived models with a focus on the use and application of Instant-NGP, a method developed by research-
ers from the technology company NVIDIA. We discuss experimental applications of NeRF based on 
the case study of the post-disaster landscape of Ahr Valley, Germany, affected by a 100-year flood in 
2021. In particular, we are interested in the benefits of NeRF in comparison to other landscape modeling 
methods, such as Structure-from-Motion (SfM) or Multi-View-Stereo (MVS), which use similar data 
as input.  

This study shows that the application of NeRF technology can be a promising alternative for capturing 
and visualizing landscape scenes. The study focuses especially on tasks and situations where the larger 
spatial context – the landscape – is of interest and importance. The technological aspects of how NeRF 
models work are relevant, but our main focus is on their potential implications for the field of landscape 
architecture. Technical development and research in the scientific field of computer vision are acceler-
ating rapidly. As users, rather than developers, of digital tools, we believe that NeRF technology re-
quires professional validation through real-world landscape projects. 

Keywords: Neural Radiance Field, NeRF, Novel View Synthesis, Instant-NGP (Instant Neural 
Graphics Primitives), Ahr Valley Flood 2021 

Fig. 1: Neural Radiance Fields NeRF model based on data extracted from a drone flight 
southwest of Ahrweiler, Germany (NeRF model: SCHOB 2022; Drone imagery: 
REKITTKE 2022) 
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1 Introduction 

Upon reviewing a corresponding article on computer science, we developed a more compre-
hensive understanding of what can be generated with a Neural Radiance Field (NeRF) and, 
consequently, the relevance and potentials of this technology and method in future develop-
ments of spatial design in general and more specifically, in landscape architecture. The NeRF 
approach comes from the computer science field of self-learning systems – as “neural” refers 
to “self-learning” – and we recognize the task of introducing this method to digital landscape 
architecture as an urgency, which our contribution is centrally dedicated to. In this context, 
we set out to generate on-site images – starting with the university campus and ending with 
a significant flooded area after a disaster – that we could use for our related experiments with 
NeRF technology.  

2 NeRF – Neural Radiance Fields 

Neural Radiance Fields (NeRF) is a method for novel view synthesis and volumetric scene 
reconstruction based on real-world training data. NeRF was introduced by (MILDENHALL et 
al. 2020) and, since then, has gained traction in computer vision and related fields (GAO et 
al. 2022, TEWARI et al. 2022). “In its basic form, a NeRF model represents three-dimensional 
scenes as a radiance field approximated by a neural network. The radiance field describes 
color and volume density for every point and for every viewing direction in the scene” (GAO 
et al. 2022). The original approach by Mildenhall et al. “represents a scene using a fully-
connected (non-convolutional) deep network, whose input is a single continuous 5D coordi-
nate (spatial location (x; y; z) and viewing direction (𝜃𝜃; 𝜙𝜙)) and whose output is the volume 
density and view-dependent emitted radiance at that spatial location” (MILDENHALL et al. 
2020). The NeRF model uses a set of two-dimensional RGB images, and their camera poses 
to create synthetic three-dimensional scenes. These scenes can be rendered into new images 
or video animations of photo-realistic quality (GAO et al. 2022). NeRF models can also be 
exported as simple mesh models. Emerging from the field of computer vision, the primary 
focus of the NeRF method is to produce visual representations of a scene, surface, or object. 
Unlike other methods and sensors in remote sensing and environmental modeling, NeRF does 
not originate from a surveying or measurement context. NeRF uses internal coordinate sys-
tems instead of geographic reference systems, which were not a priority in its development. 
In the field of landscape architecture, the fact that the NeRF model is not connected to a real-
world coordinate system that potentially links data to a ground-truth reference might be un-
usual at first. The rooting in scanning and surveying that led to the rise of lidar point cloud 
models in the field is being replaced with a kind of ground truth of images. The article 
“Ground truth to fake geographies: machine vision and learning in visual practices” by GIL-
FOURNIER & PARIKKA (2021) is of importance to this discussion and, particularly where the 
authors argue that “ground truth has shifted from a reference to the physical, geographical 
ground to the surface of the images.” 

A NeRF model is not limited to generating a radiation field but can also be used to generate 
point-based radiation fields (XU et al. 2022) or voxel-based models (YU et al. 2021). Since 
its publication in 2020, the paper ‘NeRF: Representing Scenes as Neural Radiance Fields for 
View Synthesis’ by MILDENHALL et al. (2020) has inspired many researchers to advance, 
adjust, and refine their methods (GAO et al. 2022, TEWARI et al. 2022). Especially the pro- 
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cessing speed metric has been a major threshold in making the method available to a wider 
array of users, as it is directly connected to the complexity of scenes and the hardware nec-
essary for their generation. Comparing the element of speed between the newer and older 
models, we can observe that the former outperforms the latter by several orders of magnitude. 
While processing a specific scene takes twelve hours in 2020 (MILDENHALL et al. 2020), the 
same scene takes only about five seconds in the middle of 2022 (MÜLLER et al. 2022).  

 
Fig. 2: Visualization of the technical-spatial extent of a zoomed-out NeRF model, viewed 

from above. The light blue object circle at the bottom center of the image shows the 
camera position and direction of the drone images used as training data. An inward-
oriented circle (camera orbit) was flown (NeRF model: SCHOB 2022; Drone im-
agery: REKITTKE 2022). 

GAO et al. (2022) provide an overview of existing literature grouped based on their focus on 
applications such as three-dimensional reconstruction, image processing, or urban applica-
tions. Especially interesting is a model for large-scale scene reconstruction (TANCIK et al. 
2022) that lets us envision potentially global scale models. Significant improvements have 
been made to NeRF models, creating a wide range of applications, including “urban mapping 
/ modelling / photogrammetry, image editing / labelling, image processing, and 3D recon-
struction and view synthesis of human avatars and urban environments” (GAO et al. 2022). 
Recent advances in NeRF model performance have also made this technology more accessi-
ble to professionals in related fields outside of computer vision. More specifically, profes-
sionals from fields involved in digital visualization and aesthetics, such as landscape archi-
tecture, will be encouraged to test and develop their own models in relation to their specific 
tasks and topics. 
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2.1 NeRF Aesthetics 
Customary techniques for reconstructing three-dimensional landscape scenes, such as point 
clouds or vectors derived from photogrammetry, result in models whose aesthetics are de-
tached from their physical context – the surrounding landscape. Where the lidar scanner rays 
end for a point cloud model, a black hole opens as the model background. Such models rep-
resent their own digital aesthetics and stand in stark contrast to the realism of photography 
and film. From an aesthetic point of view, there was always a significant difference between 
the navigable three-dimensional model and the modeled real scene. Lidar scans, or photo-
grammetric scene reconstructions, seem to be functionally limited by their rootedness in tech-
nical correctness and dimensional accuracy. It is difficult to implement diverse, complex, and 
associative topical links in these models. In contrast, NeRF technology translates the ability 
of photography or film to capture the full context of a scene, including the background, into 
a complex three-dimensional model with an identifiable background (Fig. 1 and 2). A NeRF 
model generates a detailed reconstruction of variables, which are key in registering a scene. 
In addition to position and color, other variables transferred to the model include light inten-
sity, darkness, and transparency. The ability to incorporate these elements presents an un-
precedented three-dimensional realism (Fig. 3). Point cloud models, with high point densities 
and an even distribution of points, appear sparse up close and denser from a distance, where 
this higher density does not correspond to increased information. Combining point cloud 
models with different resolutions or resampled data can thus be useful for creating large mod-
els. Christophe Girot describes such combined models through the term he coined as cloud-
ism (GIROT 2020). As we have established the possibilities of the NeRF method, we propose 
to counteract the newfangled term cloudism, again with a classic term – realism. Landscape 
in the form of a model is still most accurately understood – by laypersons and experts alike 
– when it corresponds to the common appearance of the surrounding landscape. 

 
Fig. 3: Comparison of training data in the form of drone images (left) and the resulting 

NeRF model (right). The slightly lower image definition of the NeRF is noticeable 
only on close inspection. However, the landscape as such is clearly identifiable 
(NeRF model: SCHOB 2022; Drone imagery: REKITTKE 2022). 

2.2 Instant-NGP 
For the generation of our experimental NeRF outcomes, we used Instant-NGP (Instant Neural 
Graphics Primitives), an open-source software framework developed by NVIDIA. The soft-
ware framework processes Neural Graphics Primitives that, in addition to NeRF, can also be 
used for Gigapixel images, neural Signed Distance Functions (SDF), and Neural Radiance 
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Caching (NRC). Our paper is limited in scope to NeRF models. Instant-NGP is proving to be 
one of the most popular and regularly updated NeRF generation solutions. It trains a NeRF 
in seconds using multi-resolution hash encoding. The coordinates are hashed and used as an 
index into a stack of multi-resolution data arrays, drastically reducing the number of param-
eters per model. The NeRF model is constrained by a unit cube bounding box set at a coor-
dinate space of [0,1]³. The model has the highest resolution around a central point positioned 
at the center of the unit cube, at [0.5, 0.5, 0.5]. 

3 Case Study Ahr River Valley 

For our initial experimentation with the application of NeRF technology, we focused on the 
case of the Ahr Valley in Germany in the aftermath of the 2021 flood disaster. We obtained 
the related fieldwork data through camera tours and UAV flights on-site. In the summer of 
2021, between July 12th and July 15th, the Ahr River Valley experienced a 100-year flood as 
a result of pronounced heavy regional rainfall events in connection with a low-pressure sys-
tem. In addition, the soils in the affected regions of Rhineland-Palatinate and South West-
phalia could hardly absorb any additional water (GERMAN WEATHER SERVICE 2021). After 
the flood, which took the lives of many people and caused extreme destruction, the hasty 
reconstruction activity did not necessarily lead to sustainable design and building. 

 
Fig. 4: NeRF model based on data extracted from a drone flight southwest of Ahrweiler, 

Germany. The frame circle in cyan shows the individual frames and the viewing 
direction of the drone flight (NeRF model: SCHOB 2022; Drone imagery: REKITTKE 
2022). 

“The moment after a natural disaster is a window of time that can be used to adapt-to-climate 
(change), but this opportunity is in many cases demonstrably wasted. […] After a disaster, 
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amnesia leads people to forget about what primarily should be designed and built” (REKITTKE 
& NINSALAM 2022). Without a thorough analysis of a disaster, economically and ecologically 
sensible decisions become unlikely. There is a danger in conducting post-disaster analysis 
and the subsequent planning and design relying solely on documents like maps or legal texts, 
which operate on a high level of abstraction. It is imperative to incorporate what the people 
themselves have seen (REKITTKE & NINSALAM 2022). We are interested in NeRF technology 
for this particular reason, as it opens up new possibilities for visual realism and the ability to 
integrate different temporal layers into a single landscape model. Disasters reveal snapshots 
of many aspects that should have been taken into account during planning phases and are 
overshadowed once the developments are carried through a short time later. In this pursuit, 
we aspire to preserve the memories of a flood disaster by creating appropriate landscape 
models. Like in an autopsy, the aim is to fill the common gap between reality, recollection, 
and forward planning with evidence that is supposed to trigger cogitation (REKITTKE & 
NINSALAM 2022). 

3.1 Data Collection and Processing 
For testing NeRF models in the context of post-flood Ahr River landscapes, we created an 
extensive dataset consisting of 106 video and image samples using UAV-mounted cameras 
(Fig. 4) and ground-based handheld smartphone devices. Our data were collected in two sep-
arate sessions. The first was during the flood event in July 2021– sporadic and ad hoc. The 
second was in September 2022, in the course of systematic fieldwork. Our aim was to create 
cases using one of the most common NeRF methods available. All NeRF models were trained 
locally using Instant-NGP. The GitHub repository (GITHUB / instant-ngp 2022) provides doc-
umentation on software and hardware requirements, installation, pre-processing, training, 
and rendering NeRF, as well as exporting. Another document on GitHub provides additional 
advice on the process (GITHUB / nerf_dataset_tips 2022). We created a separate NeRF model 
for each set of input data, following a list of six sequential processing steps: 1) data acquisi-
tion, 2) data pre-processing and frame extraction, 3) pose estimation, 4) NeRF model training, 
5) video export, and 6) post-processing. 

1) Data acquisition for each site was carried out using lightweight, field study-ready collec-
tion devices: a DJI Mini drone and an iPhone 11 Pro. For all data acquisition, we used the 
highest possible resolution of the devices. The drone videos were shot at 2.7K resolution 
(2720x1530), 23,97 fps, in MPEG-4 format. With the smartphone camera, we shot videos at 
Full HD resolution (1920x1080), 59,94 fps, in MPEG-4 format, and pictures at 12MP reso-
lution (4032x3024), in JPEG format. Shots in the wide-angle camera mode (0.5x, 13 mm 
equivalent focal length, 120° field of view) were particularly effective. In total, we collected 
96 videos and 10 image sequences, a raw data package of 35 Gigabytes. 

2) For the video shots from the field, we extracted a set of sequential frames ranging from 50 
to over 400 images. The image sequences were filtered to the same amount. NeRF models 
based on the method of Müller et al. (2022) do not infinitely increase resolution or quality 
with a more extensive set of input images. Mildenhall et al. (2020) and Müller et al. (2022) 
use tens to hundreds of images to train NeRF models. We followed the recommendations 
presented on the GitHub forum (GITHUB / nerf_dataset_tips 2022). Furthermore, we tested 
the application of digital image enhancement techniques such as sharpening, noise reduction, 
and super-resolution to improve matching image detection. 



434 Journal of Digital Landscape Architecture · 8-2023 

3) We used the COLMAP pipeline that was part of the Instant-NGP codebase to process an 
estimate of the camera poses for each image set. The resulting JSON file containing the cam-
era parameters for each image was saved in a folder along with the original images in the 
format TRANSFORMS.JSON. 

4) We trained our NeRF models using the interactive GUI (Graphical User Interface) that 
was included in the codebase. The GUI offers a variety of different tools for training, visual-
ization, and export, as well as allowing the user to interactively move through a scene while 
the model is being rendered in real time. Training begins by launching the GUI from an 
Anaconda prompt, and within seconds, the model evolves from blurry noise to a clear repre-
sentation of a scene. Once the training reaches a satisfactory level, the training progress can 
be saved as a JSON file – called snapshot – which can be used to reload the NeRF model or 
to create an animation. The GUI facilitates interactive creation and saves a camera path along 
a set of key frames that can be used to export a video animation. 

5) The codebase allows exporting of flythrough video animations of the NeRF model using 
the previously generated training progress and camera path. The export is handled outside 
the GUI in an Anaconda code prompt using Python bindings. We exported a range of video 
animations up to 4K resolution at 30 fps. 

6) The exported videos can be easily edited using common video and image editing tools. 
Since both the input and output of the NeRF model are image-based, digital editing and pro-
cessing pipelines such as image sharpening, noise removal, or frame interpolation can be 
applied before and after NeRF modeling. The user has full control over both pre- and post-
NeRF model media, as would be the case with photography, photogrammetry, or map-mak-
ing. 

4 NeRF for Landscape Architecture 

Although we have been working with NeRF technology for a limited time and therefore did 
not yet utilize its full potential, we can already identify and highlight some of its specific 
strengths. We offer a selection of tested applications for NeRF technology, generally for 
landscape architecture and, more specifically, in the context of our case study. In addition to 
the enormous technological advances that have determined the rise of NeRF technologies in 
recent years, the method has to be tested in relation to issues concerning landscape architec-
ture. 

4.1 Multi-Resolution Models 
For NeRF models, it applies that their resolution is not developed in relation to the model but 
to the depth of information captured from the input images. “The multiresolution aspect of 
the hash encoding covers the full range from a coarse resolution 𝑁𝑁min that is guaranteed to 
be collision-free to the finest resolution 𝑁𝑁max that the task requires. Thereby, it guarantees 
that all scales at which meaningful learning could take place are included, regardless of spar-
sity” (MÜLLER et al. 2022). In the context of the Ahr Valley after the flood, we are able to 
create a lightweight but complex three-dimensional model that enables capturing environ-
ments at multiple scales: from the rocks in the Ahr riverbed to the flowing water, from the 
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riverbanks and adjacent vegetation to patterns of the urban fabric, and from the mountains in 
the background to the clouds in the sky above the valley. The main benefit we see in our 
case-based NeRF models is that they feature a high spatial depth, capturing the sky, clouds, 
and even distant landscape features such as mountains, valleys, and urban areas. In the case 
of the Ahr Valley, the NeRF model consolidates all flood-relevant factors to be discussed 
simultaneously in one model: the change in sediment flows in the river, the altered course of 
the river, the destruction of urban settlements and agriculture in the Ahr valley near the flood-
plain, the topography of the valley where water has accumulated downstream. More ad-
vanced NeRF models can present the rich contextual depth of the mapping in the form of a 
navigable three-dimensional model. Xiangli et al. (2022) outline the nature of such prospec-
tive models by expanding the notion of rendering scenes at multiple resolutions by “modeling 
different scenes at multiple scales with drastically varying views on multiple data sources” 
(XIANGLI et al. 2022). 

4.2 Object Focus versus Open World Scene? 
Based on our current research and studies, we observe a certain level of contradiction regard-
ing the great landscape potential of NeRF models and their technical nature. NeRF is de-
signed to feature a central point in the model, from which the resolution gradually decreases 
towards the edges of the bounding cube. This raises the question of whether NeRF models 
are inherently object-oriented (single object) and how this might impact the modeling of non-
point-centric open-world scenes, such as landscapes. Is our positive assessment of the NeRF 
landscape model accurate, or will the triumph of the NeRF models primarily extend to object 
models, for example, in the context of architectural projects? Instant-NGP NeRF models are 
constrained by a maximum resolution bounding box at its center. But in our case study, we 
fed this “machine” exclusively with data from landscape photography and landscape videos, 
thereby obtaining effective landscape models. We suggest that future explorations are “to be 
continued.” 

4.3 Comparison to Photogrammetry and Point Cloud Models 
There are partial overlaps in data collection and processing methods between NeRF models 
and photogrammetric processing. Both methods use two-dimensional raster images as input 
data and share further similarities in the initial processing of this input data. A wide range of 
NeRF methods, including the one of Müller et al. (2022), use COLMAP, a package for SfM, 
to extract camera poses. Models derived from lidar scanning or photogrammetric modeling 
still offer higher geometric accuracy than NeRF models (LEHTOLA et al. 2022). For our own 
comparison of the different methods, we created a set of 406 frames from a selected drone 
flight, which we used as input for corresponding NeRF and photogrammetric models. The 
NeRF model was generated with Instant-NGP, and the photogrammetry model was processed 
as a dense point cloud in Agisoft Metashape. The point cloud was exported as a file in LAS 
format with 12 million points and a file size of 326 MB. 
The output quality of a photogrammetry process is assessed based on the accuracy of where 
the resulting points are positioned with respect to a ground truth reality. Passive sensing data, 
such as intensity return data or true color imagery captured by other sensors, may only sup- 
ort subsequent analysis or enhance visualization. In many ways, the NeRF model sits some-
where between the perception of space and the perception of textures, materials, light, and 
color. There are various metrics can be used to assess the quality of a NeRF model. Many 
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fundamental advantages of photogrammetry, such as a relation to a “real world” Coordinate 
Reference System (CRS) and transformations of the model with respect to this CRS, are not 
yet realized in the NeRF system we used. Nonetheless, this does not preclude the possibility 
of implementing them in future applications. 

A NeRF differs from all the traditional three-dimensional scene formats commonly used in 
the field, some of which include vectors or meshes, grids, and point clouds. Each format can 
have distinct ways of formulating a representation, which can yield a unique set of advantages 
and disadvantages depending on the format used. It can therefore be difficult to judge a NeRF 
in relation to the qualities of these formats. Some of these metrics may be embedded in the 
process or acquisition technology used for data generation to determine the potential for ac-
curately representing a scene from the start. Different metrics apply to data obtained from 
photogrammetry or lidar scanning. Such comparisons exist in various areas that are tangen-
tially linked to landscape architecture, for example, in heritage preservation. Data obtained 
through lidar scanning is among the most accurate geometric data available in modern scan-
ning techniques but lacks the ability to accurately capture the texture and diagnostic color 
information (DOSTAL & YAMAFUNE 2018). Perhaps the most fascinating outcome of the 
method is not the NeRF model itself but the images and videos that are generated from the 
model (Fig. 5 and 6). MILDENHALL et al. (2020) state that the results of view synthesis are 
best viewed as videos. 

 
Fig. 5: Comparison of a NeRF model (left) and a model derived from photogrammetry 

(right) of the same area. The point cloud model is black in the background, while 
the NeRF model captures the depth of the landscape at several levels of resolution 
(NeRF model: SCHOB 2022; Drone imagery: REKITTKE 2022). 

 
Fig. 6: Comparison of a NeRF model (left) and a model derived from photogrammetry 

(right) of the same area. Even in the close-up scene, the NeRF model provides higher 
visual resolution than the point cloud model (NeRF model: SCHOB 2022; Drone im-
agery: REKITTKE 2022). 
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4.4 Material Noise 
Metrics such as reflection or change in transparency and color as a function of position are 
not considered part of the physical enterprise of the object or scene in the current literature 
on photogrammetrically derived models. Rather, they are viewed as factors that distort or 
corrupt the signal in ways that may need to be eliminated in order to derive a high-quality 
model. In scenes produced by photogrammetry, removing water-surface reflection effects 
presents a challenge (PARTAMA et al. 2018). Materials featuring difficult optical properties – 
including but not limited to absorptivity, reflectivity, scattering, challenging texture and com-
plex shape or geometry – still pose challenges in photogrammetry (NICOLAE et al. 2014). The 
distinction between signal and noise is pronounced in the literature on photogrammetry and, 
more generally, in remote sensing and earth observation. The NeRF model, on the other hand, 
allows data otherwise defined as noise to be used to visualize unstable materialities, surfaces, 
and objects. In our case study, for example, we had the means to illustrate the unstable nature 
of the Ahr River – with its changing water levels up to extreme flooding conditions. 

4.5 Multi-Source NeRF 
A multi-source model is based on input data generated through multiple acquisitions for the 
same or a similar area. This method can be used in situations where only a sparse set of input 
data is available to increase the resolution of the NeRF model by adding additional input data 
for angles or features not previously captured. For our case study, we trained a NeRF model 
of the Kalvarienberg Monastery and the surrounding area in the town of Ahrweiler with sev-
eral of our drone acquisitions and eventually improved the model’s resolution. In addition, 
our model captures the changing light conditions between diffused and direct sunlight caused 
by different cloud conditions during the recording period. The various parameters – geome-
try, color, lighting, texture, and translucency – captured by a NeRF model may be acquired 
independently. Each parameter can be derived from a separate set of input data. The final 
NeRF synthesis model allows navigating between these parameters in relation to the position 
and direction of a particular view. In working with a 3D landscape model, this synthesis is a 
novelty that opens up considerable potential. 

4.6 Multi-Temporal NeRF 
It sounds almost unattainable within the limitations and resources of our current time, but a 
simultaneous coupling of movement through time, and movement through space, is funda-
mentally possible with NeRF technology. This option is yet to be defined and therefore, we 
propose to use “Multi-temporal NeRF models” when referring to the visualization of chang-
ing layers of time in the course of changing positions. Multi-temporal NeRF models use mul-
tiple sets of images captured at different times and utilize them as the input to produce novel 
views that interpolate between the images. The model synthesizes the input data and allows 
it to move through time while moving through space. A Multi-temporal NeRF model makes 
it possible to capture movements, visualize ongoing processes, and depict all kinds of patterns 
of change. For example, the growth or the changing state of the health of vegetation can be 
documented in this way. The intensity of the changes captured by the model can be related 
to the temporal extent of the capture and the intensity of the change in the underlying object 
or study surface. Multi-temporality is a common concept and method in geosciences, in 
which remote sensing observations collected at different times are combined into a single 



438 Journal of Digital Landscape Architecture · 8-2023 

multi-temporal image or model. Multi-temporal analyses enable the detection and visualiza-
tion of changes in spatial patterns over time. The concept has taken root in areas such as 
architecture and landscape architecture to understand changes in the built environment. The 
landscape architect, in particular, can think of numerous possible uses. The depiction of sea-
sonal changes in the city, landscape, and vegetation are only a few of them. We find this 
method to be the most effective to this date for purposes of representing the “before” and 
“after” conditions of a site. 

In 2021, it was already demonstrated that NeRF models could be trained with unstructured 
collections of photographs taken at different times, from different angles, and under different 
lighting conditions. The model registers the static geometries of the scene but interpolates 
between color and illumination in dependence on the view position (MARTIN-BRUALLA et al. 
2021). It is possible for a NeRF to process a sequential set of images of the same scene at 
different times of the day, times of the year, and so on. The associated different lighting 
conditions of these different images, which show a time difference, allow the generation of 
an outstanding level of multi-temporality in a single NeRF result. The resulting model allows 
the user to literally move through time as they move through space – made possible by ad-
justing the different radiation fields between the time-shifted images. 

 
Fig. 7: Multi-temporal NeRF, 2019 (left) and 2022 (right) captured in a single model (NeRF 

model: SCHOB 2022; Drone photo material (AWVISION 2022), for 2019 and 2022) 

In our case study, the Multi-temporal NeRF shifts the digital model from a state of represen-
tation to a state of simulation of the underlying flood event. Our NeRF model captures and 
interpolates situations found in two self-contained trajectories. The model combines two 
drone flights – one in 2019 and the other in 2022 – over the Ahr Valley municipality of Rech, 
Germany. The acquisition from 2019 shows a historic bridge over the Ahr River, connecting 
the two halves of the village. The second acquisition captures the same location in the autumn 
of 2022, after the flood event destroyed parts of the bridge, swept away several buildings 
south of the bridge, and visibly changed the course of the river (Fig. 7). Both drone flights 
have different trajectories and viewpoints, allowing us to create a model relating one set of 
views to the 2019 acquisition and the other set of views to the 2022 acquisition. In the result-
ing NeRF model, we can navigate through the internal digital coordinate system and observe 
the changing states in quasi-real-time. 
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4.6.1 Flooding as a Multi-Temporal NeRF Application 

Due to the presence of temporal components – such as large amounts of water that flows in 
and out of a particular site – flood zones are generally considered to be suitable for the appli-
cation of multi-temporal NeRF. Instant-NGP’s interactive GUI also provides a set of visual 
debugging tools that can be used to uncover the internal structure of input and output neurons. 
The parameters of these tools are recorded as part of a keyframe animation. For our case 
study dealing with speculative scenarios of a flood-ravaged valley, we used the partial acti-
vation of neurons as a rising green light field to simulate the rising waters of the flood through 
visuals (Fig. 8). Through this experimentation, we found a simple yet very powerful tool for 
digital flood simulation with full visibility of all model elements. Supporting this hypothesis 
(LI et al. 2022) have shown that NeRF models can be used to simulate ultra-complex climate 
events. 

 
Fig. 8: Flood simulation using a partial activation of neurons in the NeRF model (NeRF 

model and photo material: SCHOB 2022) 

5 Conclusion 

This paper presents a baseline study on various approaches and methods of working with 
NeRF models in landscape architecture. The aim is to inspire and encourage researchers in 
related fields to develop in-depth studies on the applications of NeRF. Our interest in NeRF 
is fundamentally rooted in the idea that landscape is anything but static, which is, at the same 
time, where we find significant potential in this approach. NeRF models can be useful for 
“wandering” through changing light conditions or addressing moving objects, such as water, 
clouds, birds, cars, trains, and others. Different materials can be evaluated through direct 
comparison. Reflections and light, as well as structure, can be included in their changing 
appearance. Changed terrain, for example, differing terrain heights in the course of a con- 
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struction project, can be evaluated. In addition, the same scenes and objects could be recorded 
under different lighting conditions in order to enable a critical evaluation. For example, early 
in the morning, at noon, in the evening, or in cloudy weather. The NeRF interpolates between 
the input images, allowing for seamless switching between different states within the result-
ing model. It is an important task to think of a landscape model not as a static set of coordi-
nates, i. e. point clouds, raster, or vector data, but as a set of parameters that are constantly 
changing. As in a landscape as such, the model changes depending on the viewer’s position 
– an unstable model. The fact that NeRF crosses the border between modeling and simulation 
suits the instability and openness of the landscape subject. We are dealing with a technology 
that is still very new and largely untested but whose potential seems enormous. Most com-
puter graphics algorithms and techniques developed over more than half a century assume 
meshes or point clouds as three-dimensional scene representations for rendering and editing. 
Neural rendering, on the other hand, is such a recent field that the term was first used in 2018. 
For this reason, there is an inevitable gap between the available methods that can work with 
classic three-dimensional representations and those that can be applied to neural representa-
tions (TEWARI et al. 2022). This is definitely true for the field of landscape architecture, and 
we look forward to the developments and publications that will qualify NeRF models for 
landscape architecture in the years to come. 

 
Fig. 9: NeRF model limited to a bounding box that serves as section planes (NeRF model: 

SCHOB 2022; Drone photo material: OSTERBURG 2021) 

In 2019, Christophe Girot described how the point cloud model overcomes the separation 
between model, architectural drawing, renderings, or other visualizations. “In the “cloudist” 
approach, there exists no separation between a model, a section and a plan: they all stem from 
the same cloud of design information. Separate renderings or visualizations become quite 
unnecessary, since the views generated are directly derived from the model, with their own 
singular aesthetic” (GIROT 2019). NeRF models remove the threshold between different 
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forms of representation (Fig. 9). The NeRF method offers qualities similar to point clouds 
but significantly reduces the separation or the visual contrast between the model and reality. 
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