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Abstract: Visual perception is one of the most important sensory processes for most of the population. 
This process plays a key role in how we navigate and way find in urban environments. A wide range of 
literature offers insight into the relationship between the structure of urban spaces and navigability, as 
well as literature identifying how individual differences play a role in how well people can recall ele-
ments and navigate environments. Measurement techniques that reveal these differences are often cap-
tured as procedurally based evaluations after individuals have navigated through an environment. How-
ever, these valuations do not necessarily help us understand the process of how observations link to 
recall and navigation. In this paper, we show a new technique for conducting eye tracking in 3D virtual 
environments to assess the process of observation in urban environments. Further, we demonstrate how 
clustering techniques can be used to improve eye tracking data generated in these 3D environments. 
The techniques we provide can offer a new means to better understand how form, function, and design 
elements are observed. 
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1 Introduction 

In navigation, the visual perception of an environment plays a significant role in decision-
making, as well as informs knowledge about the properties of spaces and the relationships of 
objects that form the collective environment. One of the ways researchers have attempted to 
understand the decisions we make during navigation is to create highly controlled experi-
ments using virtual environments (BRUNS & CHAMBERLAIN 2019). However, many of the 
previous experiments lack a comparable diversity of objects, routes, scales, and relationships 
between these elements in comparison to the real world. The benefit of virtual environments, 
particularly with modern gaming engines, is that the designer can control all elements within 
the environment. This offers a means to simplify a problem and employ a more deductive 
scientific process, but it may come at the cost of understanding how perception works holis-
tically within complex spaces. Unfortunately, quantifying perception holistically would re-
quire new methods for analyzing the process of perception. Further, a method like this would 
need to be implemented in complex environments, which can be self-defeating if it requires 
an oversimplification of the environment itself to operate. Thus, finding a technique that en-
ables both the employment of complex virtual environments and a seamless integration of 
analyzing perception holistically would be a major step in understanding the relationship 
between human and environmental interactions. 

Designing spaces for intuitive navigation is an important process for urban designers, campus 
(e. g. business parks) planners, and outdoor recreation trail designers. There are many design 
problems to undertake in these instances, with navigation and wayfinding within the set of 
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issues. Both these processes require individuals to recognize spatial patterns, comprehend 
relationships of elements, make determinations of how to focus their attention, and remember 
important objects or spaces. There have been many approaches to assessing these processes, 
such as measuring response times and accuracy in remembering landmarks or locations 
(CHRASTIL & WARREN 2015, ERICSON & WARREN 2020, GAGNON et al. 2018, WEISBERG et 
al. 2014) and assessing map drawings of paths and spatial layout (BRUNS & CHAMBERLAIN 
2019, GARDONY et al. 2016, WANG & SCHWERING 2015). However, these measures are usu-
ally done post hoc rather than in real time. Further, the measures are usually procedurally 
based (e. g., memory recall), rather than processes based (formation of memories). To im-
prove our understanding of how process-based navigational activities unfold, we need to un-
derstand what drives perception and decision-making. A better understanding could help de-
signers support meaningful relationships between objects to facilitate these perceptual pro-
cesses. Fortunately, computational techniques can be created and then combined with cogni-
tive science and urban and landscape design principles to better understand how individuals 
observe and make inferences about those spaces. 

Eye tracking is one technique that has been used by researchers to better understand the pro-
cess of observation. It has been used for decades to understand how and why an individual 
focuses on particular objects, areas, and elements of space. Implementations of eye tracking 
have been primarily conducted in 2D environments (e. g. looking at a screen or flat image). 
This includes architectural-related studies (XIANGMIN et al. 2021, ZHANG et al. 2019), with 
landscape studies emphasizing 2D static images (DUPONT et al. 2016). In landscape and ar-
chitectural studies, eye tracking is used to identify fixations within scenes, and in psychology 
can help describe visual attention and arousal (KIM & LEE 2021). With many metrics that 
can be analyzed from these data, broadly, one major advantage is to provide an objective 
measure of perception (DUPONT et al. 2014). Yet, relative to 2D eye tracking studies, there 
is little literature showcasing implementation in 3D dynamic environments. 

In this study, we combine the generation of virtual environments and eye tracking to visualize 
individual observational patterns in a virtual space. We extend previous work (FERNBERG et 
al. 2022) to showcase a new open-source software package we developed, as well as an ana-
lytical framework for representing these data. This paper deviates from the previous by show-
ing specific visualizations and analyses of large datasets that have been analyzed, whereas 
the previous version was introducing the construct. The purpose of this study is to showcase 
how eye tracking data can be represented in a dynamic 3D environment and how those data 
can be analyzed using mathematical clustering mechanisms. We ask, to what extent can eye 
tracking be implemented in 3D gaming environments and analyzed post-hoc to determine 
fixations of objects within virtual urban spaces? 

2 Data Collection from the Virtual Environment 

For this work, we employ the Unity gaming engine and prefabricated 3D assets (from Kit-
bash) to create a procedurally generated urban environment which can be explored in VR. 
The design of the environment was not intended to be complex or realistic world because this 
is not necessary for the primary purpose of implementing eye tracking and testing different 
clustering techniques. The environment consisted of 40 x 100-meter-long blocks, where each 
block was one of five different architectural styles. The purpose of this setup was to observe 
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if the pattern of clustering was different closer to transitions between different architectural 
styles compared to areas where changes did not exist. However, in this study, we were merely 
attempting to identify how we might cluster data, the actual test of these transition zones is 
meant for a later study. For now, all elements are static, the user can make observations freely, 
but cannot change their location or speed of experience. Further, we have not included any 
other cues, such as sound, lights, or atmospheric changes. Each object was placed along a 
two-lane road in succession, with variable spacing between each building.  

 
Fig. 1: Perspective views of the virtual environment in Unity as seen by study participants 

The eye tracking software we developed, was created for implementation in the Unity gaming 
engine only. For this implementation, the Vive Eye Pro virtual reality headset was used. 
Within Unity, the headset was established as the user camera and the scripts were then asso-
ciated with this camera. Movement through the environment was maintained at a consistent 
speed, but the viewer can fully move their head around. The eye tracking software stores the 
location and rotation of the user’s eyes at every frame that gets rendered (about 60/sec). The 
data from each eye is averaged to create one point and one direction. This direction is, of 
course, where the user is looking. Using this information, we create an invisible virtual ray 
that extends from the eye outwards (see Figure 2). Once this ray hits an object, the collision 
point (location of the intersection of the eye tracking ray and the surface of the object) is 
recorded along with the object’s name and position (recorded for accurate reproduction of 
the data before participation). Other metrics are recorded and computed such as eye angle 
(looking left/right/etc.), distance from eye to collision, and whether they are blinking or not. 
The figure below is a representation of rays produced along the route as a user looks at objects 
on the buildings’ surfaces. 

The data produced from a single experiment can result in a substantial number of data points 
collected. With such a vast amount of data being produced, it is important to identify the most 
relevant data that could provide researchers with meaningful interpretations of observational 
patterns. So, we needed to identify ways to reduce the amount of data by reducing noise and 
jitter. Then, we needed to cluster the remaining data into meaningful groups, referred to as 
fixations. From this data, we can determine the total dwell time and total fixation count for 
specific areas of interest. The areas of interest are regions in the environment that are im-
portant (HOLMQVIST et al. 2011) and could be identified as specific objects of general areas 
along an object. 
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Fig. 2: Example of perspective views of the virtual environment in Unity. Here, rays are 

shown while looking at specific targets to demonstrate both clustering of data and 
the ray from the observer to the surface of an object. Targets are shown here merely 
for demonstration and were not visible in this experiment. 

To produce clusters from denoised data, we tested a clustering method called DBSCAN. 
DBSCAN stands for Density-Based Spatial Clustering of Applications with Noise. This tech-
nique uses an unsupervised machine-learning algorithm to identify clusters of observations. 
As the name implies, it uses the spatial density of the data points (in any number of dimen-
sions) to create clusters and eliminate noise. One important function of this algorithm is that 
you can use more than the 3-dimensional distance to find spatial density. It can include factors 
such as eye rotation and time in its calculations. This can be useful because in a dynamic 
environment participants can first look at an object in the distance, then as they move forward 
through an environment, look back at the object again. This dynamic facet of 3D gamine 
environments makes it critically important to ascertain what is a fixation across distances, 
versus random noise that could have been part of a rapid eye movement across an area and 
along an object. 

3 Implementation and Outcomes 

In this section we highlight the results from the clustering technique to show: 1) the volume 
of data produced by a single participant, 2) the observational patterns of the participant, and 
3) the effects of implementing the clustering algorithm on the previous two. In this section, 
we provide context to the implementation (for each of these three), takeaways from our ex-
perience, and general statistics to highlight an overview of the outcomes. 

In our experiment, a single individual produced 39404 observations over the entire 9 minutes 
and 35 seconds of the experience. This averaged about sixty-eight observations per second. 
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The rate of eye tracking data collection depends upon Unity’s internal update function, which 
is the same as the framerate. Framerate is affected by how many objects are in view and need 
to be processed by the GPU. Therefore, the framerate can vary throughout the experiment. 
While it can be helpful to maintain a high-frequency rate to minimize motion sickness and 
improve realism, it is unknown the extent to which the rate of data collection would impact 
the results, for whatever results are being sought. 
Using these data, we developed a simple metric to highlight how often an individual may 
look at objects versus other elements in the environment. In our implementation, the objects 
were buildings, and the other elements included the ground (terrain), the street, and the sky. 
In our implementation, the ground and street are objects because they have a surface with a 
collider that enables the collection of eye tracking data points when the vector of the obser-
vation intersects with that surface. Unlike buildings, these two surfaces are continuous through-
out the entire environment, whereas buildings are separate objects. Our eye tracking also 
indirectly collected observations of the sky (or distant void), in which there is a frame with 
no distinct object with a collision surface. Figure 3 shows global statistics of the proportion 
of observations made between the sky, terrain, road, and buildings. The figure also compares 
those data after removing saccades. Saccades and their removal are explained below. 
Eye tracking data can be difficult to interpret. This is particularly true in 3D, where there are 
very few studies that have attempted to validate how observational patterns in 3D are asso-
ciated with meaningful outcomes of navigation (UGWITZ et al. 2022). One crucial step in 
generating interpretations of data is to remove irrelevant data (e. g., noise), such as saccades. 
A saccade is essentially a rapid view of an object, then a focus away from that object with 
another quick return to the original object. In terms of perception, little to no information is 
gleaned during a saccade. Therefore, in addition to general noise (single random observation 
in space), eliminating saccades can also help streamline the data analysis. 
However, identifying these saccadic movements requires playing with the clustering param-
eters. This is because eye tracking data is generated based on a collision point for each frame, 
but how the algorithm determines if a single data point belongs to a cluster or not is a little 
tricky. To reduce noise and eliminate saccades, we implemented DBSCAN. DBSCAN takes 
the {X, Y, Z} vector position where it collided with the object, but also the time dimension 
of when it collided. Clusters are determined by locational and temporal similarities of vectors 
by turning two parameters. First, epsilon is the distance threshold from one observation to 
another (in 4D). Second, minimum points is the number of minimum points that constitute a 
cluster. Our parameters were an epsilon of two meters and a minimum points of seven, which 
represents roughly a tenth of a second or the approximate minimum amount of time for a 
fixation. Again, Figure 3 highlights the global statistics before and after the removal of sac-
cades, or points that did not belong to a cluster.  
Figure 4 further depicts an example of different clusters using different colored dots. In this 
figure, similar colored dots represent a single observational point. Find the set of green dots 
right below the purple dots. The large cluster of green dots shares a similar proximity with a 
single black dot right on the roof ridge. This black dot seems to be part of that green dot 
cluster. However, DBSCAN identified that the observation point represented as the black dot 
should not belong to a cluster. This was because the observational point was created several 
seconds prior as part of an earlier saccade (singular rapid observation), whereas the other 
observations were made in sequence (suggesting a focal point or area). 
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Fig. 3: Chart showing the distribution of observations by category (sky, terrain, road, and 

buildings). The chart shows both the original data (With Saccades) and data after 
removing Saccades. 

 
Fig. 4:  Depicts clusters (colors) and saccades (black). Image brightness has been increased 

and the rendering is done from an elevated perspective, both to improve representa-
tion for the demonstration of these data. 

4 Discussion and Conclusion 

3D gaming platforms offer the ability to produce vast amounts of user-centric data. Having 
tools to analyze these data can help designers identify environmental cues or triggers that 
could influence the perception of a design or plan. Eye-tracking offers a non-intrusive, pro-
cess-based technique for collecting very precise observations within a space. However, find-
ing a robust algorithm to cluster thousands of eye data points is essential to making mean- 
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ingful interpretations of these perceptions. Using the software we produced, these patterns 
can be visualized and reduced for making assessments about areas or objects favored by us-
ers. DBSCAN is one of several techniques available but has been shown to produce good 
results (ESTER et al. 1996). This paper was not intended to conduct a systematic comparison 
across these techniques and variations, but instead to demonstrate the potential for eye track-
ing data in combination with a clustering technique to produce useful data. 

The next major step in this research is to understand how these data can be related to mean-
ingful observations to help form decision-making and recall. Understanding this link can help 
designers better associate the placement and patterns of objects, such as landmarks (BRUNS 
& CHAMBERLAIN 2019), within the environment to improve wayfinding and navigation. As 
Thus, some next research questions are: to what extent do eye tracking observations in a 
dynamic 3D virtual environment correlate with memory recall, navigational decisions, and 
pattern recognition about the overall design of the environment? More broadly, to what extent 
can eye tracking help us understand how individuals form mental maps? In our experience, 
we noticed several situations where individuals were following unique building features, 
peering through passageways, and scanning the topography of buildings. While these obser-
vations are anecdotal and with limited data, they do suggest these data could help validate 
the importance of or focus on different architectural forms, textures, and aesthetics. 

Implementing eye tracking in 3D-controlled virtual environments shows promise for aiding 
the examination of observational processes. This will have relevance in multiple fields. Cer-
tainly, eye-tracking has been used in 3D gaming, but studies in psychology, architecture, 
urban design, interior design, and landscape architecture could benefit from having access to 
individual patterns of observation data. Eye tracking is a well-established technique but em-
ploying it within 3D environments and determining how to associate these data with mean-
ingful interpretations will provide new opportunities and insights for landscape studies.  
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