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Abstract: Visual landscape quality represents a potential attribute of landscapes that affects people’s 
perception and psychological well-being. With the perceived sensory dimensions as a conceptual 
framework, this study proposes methods to measure visual quality in both real environments and virtual 
models, using image-based metrics from computer vision techniques and 3D model-based metrics from 
parametric modelling techniques. Using the Clementi Woods Park in Singapore as a case study, we 
compared these two types of metrics using statistical methods and proposed an approach of using a 
regression model from empirical studies to estimate subjective preference for design scenarios and thus 
to evaluate the result of landscape design scenarios. 
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1 Introduction 

With increasing concern regarding urban dwellers’ psychological well-being, studies have 
looked towards urban green spaces (UGS) as a potential salutogenic means of alleviating this 
issue. In quantifying the spatial attributes of UGS, although the quantity of greenery has been 
adequately studied, research on the objective and standardised quality that reflects percep-
tion, however, remains largely insufficient. In attempting to understand the subjective nature 
of landscape quality, visual landscape quality (VLQ) has served as a means of assessing 
landscapes that affect people’s perceptions. However, current approaches to assessing the 
VLQ have some limitations. First, the conventional methods are often based on top-down 
measurements of the landscapes which are weak in accurately representing the scenes from 
the human perspective, thus leading to the inaccuracy of measurement of the human-centric 
experience. Secondly, as GASCON et al. (2015) pointed out, proper metrics to measure VLQ, 
especially those used in urban contexts and associated with perceptions, still lack exploration. 
The stated research gaps lead to challenges in assessing real-world environments as well as 
unbuilt landscape designs that link to VLQ. The objective metrics to measure VLQ based on 
proper conceptual and technical instruments thus needs to be further explored. 

With the emerging computer vision techniques based on deep learning, an increasing number 
of studies have demonstrated the use of semantic segmentation and depth estimation to ex-
tract metrics such as the green view index (GVI), sky view index (SVI), and depth from real-
world photographs. Photographic images can reflect spatial information that mirrors what is 
seen by people. Aside from photographs, 3D models also have the possibility of measuring 
landscapes at eye level. QI et al. (2022) utilised 3D point clouds based on terrestrial LiDAR 
scans for VLQ evaluation and achieved detailed measurements of various visual and spatial 
features, albeit costly to use. A more convenient tool to use, however, could be a 3D model 
based on the landscape, which allows the evaluation of designed landscapes virtually instead. 
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We also realised that prevalent research focused on evaluating and measuring the VLQ of 
the as-is environment, but few studies have quantified the visual quality in landscape design 
that has yet to be built. The results of scientific research are also difficult to apply to guide 
design practice. LIU & NIJHUIS (2020) highlighted the importance of mapping the spatial-
visual quality in improving landscape design, whereas the measurement methods were not 
based on evidence-based studies but solely on expert evaluation. In this paper, one of our 
aims is to attempt to directly apply the results from empirical studies in improving landscape 
design. In addition, it is targeted to utilise more common tools such as Rhinoceros and Grass-
hopper that can be effectively applied by designers in the practice field, not exclusively lim-
ited to academic exploration. Therefore, we consider linking the use of image-based metrics 
and 3D model-based metrics to measure VLQ in different contexts. Given the stated research 
gaps and aims, the underlying research questions are as follows: 
1. To what extent do image-based and 3D model-based metrics adequately measure VLQ? 
2. To what extent do image-based and 3D model-based metrics align with each other in 

VLQ measurement? 
3. To what extent can the metrics be applied in design optimisation using results from 

empirical studies? 

2 Methodology 

Our underlying study focuses on developing and measuring metrics for assessing VLQ that 
mirror critical human perceptions based on conceptual frameworks and digital techniques. 
We consider both photographic images and 3D virtual models as useful tools to assess VLQ 
for the aims of assessing the real environment and measuring designed landscapes respec-
tively. The usage of the two instruments is integrated into a holistic framework primarily by 
applying the conclusions from empirical studies using images and iteratively testing and im-
proving a hypothetical design. The image-based metrics can be used to assess real environ-
ments while the metrics for 3D models can be applied to exploring different design scenarios 
that have the potential to promote people’s subjective perceptions such as preference. The 
following sections show how the study is conducted to achieve the research targets. 

2.1 Case Study – Clementi Woods Park in Singapore 
We utilised the Clementi Woods Park in Singapore as a case study to investigate the use of 
image and 3D model-based metrics. Within the park, we selected ten locations that cover 
multiple spatial characteristics ranging from open fields to sheltered viewpoints. Onsite pan-
oramic photos were taken at these 10 sites (Fig. 1) and their subsequent image-based metrics 
were measured (Section 2.2). To measure the 3D model-based metrics, however, we first had 
to reconstruct the park in a 3D environment inside Rhinoceros (Fig. 2). To accurately model 
the topography and surface elements, we used the digital terrain/surface models and airborne 
imagery from the Singapore Land Authority (SLA), and an orthophotograph using a drone. 
Trees and shrubs were modelled using adapted low-polygon-count techniques previously de-
veloped (LIN et al. 2018, GOBEAWAN et al. 2018, GOBEAWAN et al. 2021). Other elements 
such as paths, benches, pavilions, etc., were manually modelled based on the imagery data 
including maps and photos (Fig. 3). 
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Fig. 1: Ten locations in the park were selected that covered a range of different spatial char-

acteristics 

 

 

Fig. 2: A top view of the reconstructed 
3D model of the park 

Fig. 3: The showcase of reconstructed mod-
els with their corresponding photos 

2.2 Image-based Metrics and Computer Vision 
Identifying the critical landscape characteristics is a prerequisite. The attention restoration 
theory (ART) and stress reduction theory (SRT) underscore the role of greenery in providing 
effortless attention to people and relieving stress levels by experiencing natural environments 
(KAPLAN & KAPLAN 1989, ULRICH 1983). In addition, the prospect-refuge theory (APPLETON 
1975) proposed that the simultaneous presence of open enclosed space could lead to people’s 
high preference for landscapes. The perceived sensory dimensions (PSD) proposed by GRAHN 
& STIGSDOTTER (2010) have been demonstrated as a useful framework that is closely associ-
ated with psychological well-being. The PSD includes eight conceptual dimensions namely 
nature, prospect, space, refuge, serene, culture, and social which indicate different spatial 
characteristics and are often measured through surveys with respondents after exposing them 
to a variety of landscape scenes (AKPINAR 2021).  
However, few studies investigated how to use objective metrics to measure these character-
istics digitally. Following the meanings of the updated version of PSD put forward by STOLTZ 
& GRAHN (2021), we proposed eleven metrics that follow the implications of five selected 
and adapted dimensions: natural, open, sheltered, cultivated, and diverse. Those metrics and 
their related calculations or interpretations are summarised in Table 1. These eleven metrics 
including tree, shrub, depth, diversity of plant groups, etc., aim at quantifying multiple land-
scape attributes from the visual quality perspective. 
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Table 1: The PSD and the corresponding metrics using images for calculation 

Dimension Metric Description of Image-based Metrics 
Natural Tree view index Visible tree proportion 

Shrub view index Visible shrub proportion 
Grass view index Visible grass proportion 
Green view index (GVI) GVI = sum of tree, grass and shrub proportions 

Open Depth index Average distances of pixels to the camera 
Sky view index (SVI) Visible sky proportion 

Sheltered Overhead shelter index Proportion of visible shelter elements above head such 
as tree canopy and rain canopy 

Cultivated Building view index (BVI) Visible building proportion 
Service facility view index Proportion of visible facilities used for living services 

such as benches, lampposts, etc. 
Path view index Proportion of visible path or pavement 

Diverse Diversity of plant groups 
index 

Shannon diversity index of proportions of visible trees, 
shrubs, and grass 

Regarding computer vision techniques, semantic segmentation and depth estimation are used 
in this study. In terms of the semantic segmentation model, we chose PSPNet pre-trained 
based on the ADE20K dataset developed by ZHAO et al. (2017) which has been commonly 
acknowledged as having high performance regarding its accuracy and the number of identi-
fiable landscape elements. As for the depth estimation, we use the R-MSFM model pre-
trained based on the KITTI dataset developed by ZHOU et al. (2021). Using these tools, we 
can measure the above-mentioned metrics and thus evaluate VLQ from multiple dimensions.  

Concerning the “natural” dimension, the visible tree, grass, and shrub can be measured. As 
for the open dimension, depth is a critical feature that reflects the openness of space; the 
visible area of the sky (SVI), also serves as an important factor for openness. Concerning the 
 

 
Fig. 4: Examples of scenes and their segmentation or depth images with the corresponding 

values of the metrics 
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“sheltered” dimension, we measure the tree canopy and structure that are overhead serving 
as refuge elements. The visible buildings, service facilities, and paths are regarded as “culti-
vated” components that refer to man-made and managed features of landscapes. “Diverse” 
in this paper particularly underlines the richness of these types of vegetation. The Shannon 
diversity index of the visible trees, shrubs, and grass serve as the basic method for calculating 
this metric. Representative examples of a few metrics to show the spatial characteristics are 
displayed in Figure 4. 

2.3 3D Model-based Metrics and Grasshopper 
The methodology of extracting image-based metrics described above is still in the process of 
refinement. However, one distinct limitation of this method is the inability to measure hypo-
thetical or unbuilt landscapes such as those still in the design phase. As such, the study at-
tempts to use the 3D model to extract the same metrics as above in anticipation that this can 
lead to a method to measure different design scenarios. In this study, we utilise the visual 
programming workflow of Grasshopper within the Rhinoceros environment to measure the 
model. Aligning this with the image-based methods above, we measure the proportion of 
various landscape elements in view, thus mimicking the image-based segmentation method. 

To simulate the approximate height of a human eye, we begin by setting a viewpoint at 1.6m 
above the topographical mesh. From this location, a set of rays (61206 rays, each of 500m in 
length) are emitted spherically via a parallelised 3D IsoVist component (CASCAVAL 2019) 
which is typically used for viewshed analysis. These rays are then separated into two sets 
(Fig. 5), the first being a 120-degree (60 degrees above and below the horizon) horizontal 
view representative of the same viewing angle on which the image-based segmentation is 
based. The second is the overhead/top view (>60degree above the horizon) which is used to 
calculate the sheltered metric. 

 

Fig. 5: 
Rays were split into two sets, the first repre-
senting a 120-degree horizontal panorama 
(left), the second representing the overhead 
view (right) 

The added benefit of using a 3D model is that the landscape objects are already pre-seg-
mented as different 3D objects unlike those from a photograph which require an additional 
step of classification. Here, we make use of the IsoVist component to identify the different 
landscape elements being intersected (Fig. 6) and subsequently measure the proportion or 
rays hitting each of these elements. These resulting proportions eventually provide the vari-
ous percentage-of-view-based metrics such as GVI, SVI, BVI, and so on. In the image-based 
metrics, a depth metric is calculated; similarly, here we calculate a depth metric (Fig. 6) by 
comparing the average distance of each intersected ray and unitise the results between 0 and 
1, meaning completely enclosed and completely open respectively.  
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Fig. 6: A set of rays are emitted spherically from a viewpoint and the intersection points are 

coloured indicating the type of landscape element at the intersection (left). A visual 
representation of how depth is measured based on the distance between the viewpoint 
and the various landscape objects in the distance (right). 

2.4 Data Analysis for Comparison and Application of Metrics 
Upon obtaining the results of the two methods of metric measurements, we then set forth to 
compare them and propose a method of applying these metrics in design practice. First, to 
compare the quantitative characteristics of the metrics derived from images versus 3D mod-
els, we reported descriptive statistics of the calculation results, the indicators of which include 
mean, median, standard deviation, maximum, and minimum values. Second, to investigate 
the extent to which the two types of metrics align with each other, an analysis of variance 
and bivariate correlation between the two types of metrics was calculated for inspection. 
Third, as these proposed metrics are exclusively founded upon expert-based approaches and 
have not been verified to determine if they capture subjective perception, the regression result 
of an online survey from another study of ours (in writing) was applied in this paper. The 
online survey employed 1500 respondents to provide a range of perception-based responses 
to 100 interactive panoramic images of UGS in Singapore. Since “preference” is an important 
aspect that reflects subjective perception in general, we selected this factor for analysis. 
Lastly, the metrics were used to establish a regression model, the result of which would be 
employed to measure hypothetical design scenarios by adjusting landscape elements inside 
of Rhinoceros. 

3 Results 

3.1 Comparison Between Image-based and 3D Model-based Metrics 
The result of descriptive statistics of the two types of metrics is shown in Table 2. Overall, 
the mean, minimum and maximum values of each metric present similar features in quanti-
tative variation between these two types of metrics. Particularly, the values of image-based 
metrics regarding tree, grass, and sky were largely close to the corresponding results of 3D 
model-based metrics. Taking grass as an example, the results for 3D models and images were 
respectively 0.316 and 0.303 for the mean, 0.021 and 0.057 for the minimum, and 0.487 and 
0.494 for the maximum. Furthermore, to accurately examine the extent to which the two 
types of metrics aligned with each other, we used analysis of variance (ANOVA) to compare 
them. If the p-value of Welch’s ANOVA for a metric is higher than 0.05, it indicates no 
significant differences in this metric between images and 3D models. The result suggested 
that all the metrics are largely consistent, except depth. The reason was that the algorithms 
for depth based on the two instruments were different. Although we could measure the actual 
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distance in 3D models, it was currently not feasible to estimate it from a single image. Thus 
the image-based depth was merely quantified as a relative distance. To resolve this issue for 
depth, we investigated the bivariate correlation based on Spearman coefficients; the coeffi-
cient of 0.903 (at the significance level of 0.05) indicated a high correlation between the two 
groups. To summarise, all these metrics showed consistency between the two types based on 
images and 3D models.  

Table 2: Descriptive statistics of these two types of metrics for comparison, and the corre-
lation between them 

Metrics Descriptive statistics for 
3D model-based metrics 

Descriptive statistics for 
Image-based metrics 

Welch’s 
ANOVA 
(p-value) 

Bivariate 
Correla-
tion mean min max mean min max 

Tree view index 0.320 0.184 0.439 0.281 0.102 0.421 0.406 0.891*** 
Shrub view index 0.017 0.000 0.120 0.008 0.000 0.034 0.499 0.782** 
Grass view index 0.316 0.021 0.487 0.303 0.057 0.494 0.850 0.697*** 
GVI 0.653 0.304 0.856 0.592 0.313 0.866 0.449 0.733** 
SVI 0.121 0.049 0.216 0.137 0.018 0.354 0.712 0.903*** 
Depth index 0.175 0.127 0.234 0.335 0.289 0.380 0.000 0.903*** 
Overhead shelter 
view index 

0.293 0 0.996 0.197 0.000 0.517 0.399 0.535* 

BVI 0.023 0.003 0.135 0.051 0.006 0.134 0.138 0.600* 
Service facility 
view index 

0.076 0.002 0.356 0.022 0.001 0.071 0.270 0.527* 

Path view index 0.127 0.002 0.407 0.053 0.000 0.150 0.107 0.608** 
Diversity of plant 
groups index 

0.719 0.531 0.933 0.683 0.559 0.763 0.358 0.624** 

***p<0.05, **p<0.1, *p<0.2 

3.2 Parametric Design with Metrics 
Based on the survey data as mentioned in Section 2.4, a total of six image-based metrics were 
screened through a stepwise ordinary least square (OLS) regression model. The metrics in-
clude sky, tree, diversity of plant groups, service facility, depth, and shrub which are critical 
factors to predict subjective preference. These corresponding 3D model-based metrics would 
be useful for optimising the design by controlling landscape elements within the virtual 
model. In addition, a linear regression model is applicable in evaluating the design scenarios 
represented in 3D models by calculating the estimated preference (EP) as the reference to 
judge the design, which is:  
EP =  2.285 ∗ [sky] +  1.249 ∗ [tree] +  0.656 ∗ [Diversity of plant groups] +  0.829 ∗ [service facility]  

+  2.388 ∗ [depth]  +  1.128 ∗ [shrub]  +  2.065 

We selected viewpoints 3 and 9 as examples to display how to improve the design by adjust-
ing the model with key metrics (Fig. 7). The main design interventions include adjusting the 
location of the various landscape objects such as trees and service facilities as well as the 
inclusion of shrubs to increase the diversity of plant groups index all while attempting to 
increase the sky view index simultaneously. After the adjustments, we re-calculated the met-
rics and the EP (Table 3). The EP value for viewpoint 9 is increased by 0.15 while viewpoint 
3 only increased by 0.01. 
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Fig. 7: The original viewpoints 3 and 9 were modified slightly to create alternative scenar-

ios. In viewpoint 3, trees were slightly adjusted and the location of the pavilion was 
changed further away. In viewpoint 9, the sky openness increased by reducing the 
number of trees; shrubs were added to increase the diversity of plant groups. 

Table 3: The results of 3D model-based metrics and estimated preference before and after 
design 

4 Discussion and Limitation  

This study innovatively links image-based metrics to 3D model-based metrics, demonstrating 
the workflow and its feasibility of employing the proposed metrics and methods to assess 

3D model-based Metrics/ 
Estimated Preference 

Viewpoint 3 - 
original 

Viewpoint 3 - 
design 

Viewpoint 9 - 
original 

Viewpoint 9 - 
design 

Tree view index 0.255 0.251 0.423 0.277 

Shrub view index 0.029 0.035 0.000 0.112 
Depth index 0.140 0.140 0.140 0.130 

SVI 0.119 0.181 0.074 0.157 

Service facility view index 0.340 0.187 0.008 0.032 

Diversity of plant groups index 0.530 0.650 0.730 0.950 

Estimated preference 2.980 2.990 2.780 2.930 
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VLQ of real environments and virtual design scenarios. As image-based metrics are increas-
ingly applied in scientific studies that associate landscapes with various kinds of cultural 
services, our methods have successfully built a technical approach that allows the application 
of scientific results into a measurable design intervention. On the other hand, there are limi-
tations to the study stemming from two sources, the first being the algorithms and accuracy 
of the image segmentation and the second being the oversimplification of real-world land-
scapes into virtual ones resulting in certain metrics (such as BVI, and service facility view 
index) being not completely aligned with each other, and thus with lower correlation coeffi-
cients. There are some potential reasons: First, a lack of local-based training imagery datasets 
may result in lower accuracy of image segmentation. Second, in 3D models, the location, 
size, shape, and opacity of trees and shrubs differ from those in real environments which 
probably decreases the visible proportions of buildings and other objects since they are oc-
cluded by the opaque vegetation, in comparison to image segmentation can recognise the 
objects behind vegetation with less foliage (Fig. 8).  

 
Fig. 8: An example whereby trees in the 3D model are opaque by nature (left) compared to 

those photographed on site (middle) and the image segmentation result (right) 

Furthermore, one of the limitations of using our proposed metrics is that the visual quality is 
only measured from the perspective of static viewpoints, of which the metrics can change 
just by adjusting the viewpoint by a few meters such that a building is no longer occluded by 
a tree for example. What people experience or perceive when actually visiting such land-
scapes is as such likely oversimplified with a handful of measurements from viewpoints. That 
said, there are two possible ways to alleviate this issue. The first is to use multiple viewpoints 
either by repeatedly photographing the site or by measuring them via the 3D model to form 
a map instead (Fig. 9). The map might provide us with an alternative way to visualise the 
different qualities of the site through a first-person view analysis. A second possible solution 
is to calculate 3D metrics instead as proposed by QI et al. (2022). 3D metrics based on point 
clouds such as green volumetric ratio (GVR) and horizontal, vertical, and distance diversity 
(HVDD) of various can quantify 3D spatial attributes considering the volumes rather than 
the visible areas of landscape elements. This method expands the scope of landscape spatial 
attributes that can be measured purely from a visibility analysis. In future studies, we intend 
to deepen the comparison between different tools including point-cloud-based 3D metrics, 
and integrate these metrics for comprehensive applications in multiple research contexts. Last 
but not least, although we used 3D models to try to reproduce the actual landscape, it was 
challenging to achieve identical views derived from both 3D models and images. Some in-
evitable errors might happen during the modelling process or in identifying the accurate lo-
cations of the viewpoints. However, statistical methods have still demonstrated the relative 
consistency of the two types of metrics. 

These technical issues mentioned above would undoubtedly resolve as improvements are 
made to both image segmentation as well as virtual models. This paper illustrates the explo- 
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ration of linking metrics using different tools as well as linking scientific study to design. We 
thus encourage any studies in the future to apply quantitative conclusions from research in 
design practice through a similar methodology. 

 
Fig. 9: An example of different metrics extracted in a grid-like manner and their respective 

values visualised as a map instead 

5 Conclusion 

We proposed image-based and 3D model-based metrics to measure VLQ of real environ-
ments and virtual models and then compared the characteristics of these two types of metrics, 
which allows applying findings of evidence-based scientific studies in parametric designs 
using Grasshopper to evaluate the design results. We also demonstrated a method of utilising 
regression models to estimate the potential subjective preference derived from design sce-
narios. Even though further studies need to optimise the digital techniques for metric calcu-
lation, the progress of linking the two types of metrics for research and design use expands 
the scope of the application of landscape metrics. 
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