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Abstract: One of the greatest challenges China faces is how to conserve biodiversity during intensive 
urban and rural development. Ecological connectivity network modelling is a planning strategy that is 
increasingly used to achieve habitat and biodiversity conservation goals. Often, researchers have not 
given enough attention to the comparison of different methods for designing and mapping ecological 
connectivity networks in Chinese cities. In this study, we used least-cost path and UNICOR cumulative 
resistant kernel analyses to simulate the ecological connectivity network across the Luohe Region of 
China, and used the results to prioritize ecological connectivity network linkages and core areas. Our 
analysis produced three main results: (1) Least-cost paths passed through all the core areas because they 
did not consider species’ dispersal limits. (2) Species with dispersal abilities ≤ 2 km, conversely, were 
predicted by resistant kernel analysis to have highly fragmented functional connectivity networks in the 
Luohe region, while species with dispersal abilities between 4 km and 8 km were predicted to have 
moderate levels of functional connectivity, and species with dispersal abilities ≥ 16 km showed high 
connectivity across most of the study area. (3) We identified the areas of highest functional connectivity 
by intersecting >75th percentile of every resistant kernel surface. This identified an area in the Yan-
cheng district as the zone of most complete and strong connectivity. The intersection of least-cost paths 
with the 2 km threshold scenario of factorial least-cost paths was the first protection priority, the inter-
section of least-cost paths with the 8 km threshold scenario of factorial least-cost paths was the second 
protection priority, 8 km threshold scenario of factorial least-cost paths without core areas was the third 
protection priority. Our comparison of methods in mapping ecological connectivity networks is generic 
and can be performed in any cities with landscape configuration and species information. 
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1 Introduction 

Biodiversity conservation in China faces considerable challenges as intensive urban and rural 
development continues to degrade and fragment species habitats (PENG et al. 2018). Ecolog-
ical connectivity network (ECN) modelling provides a promising approach to optimally con-
serve and restore habitat such that it optimizes the effectiveness of networks of habitat core 
areas and linkage corridors (RUIZ-GONZÁLEZ et al. 2014). The increasing awareness of hab-
itat fragmentation and landscape degradation has rapidly increased demand for modelling 
tools to simulate and evaluate ECNs. Rudnick and others (RUDNICK et al. 2012) compared 
modelling methods for evaluating landscape connectivity, and noted that least-cost path 
(LCP) (ADRIAENSEN et al. 2003) and UNIversal CORridor (UNICOR) cumulative resistant 
kernel (COMPTON et al. 2007, LANDGUTH et al. 2012) analyses are some of the methods most 



G. Wang et al.: Comparison of UNICOR Cumulative Resistant Kernel Analyses 177 

frequently used to map ECNs (CUSHMAN et al. 2014, CUSHMAN et al. 2018, KASZTA et al. 
2020a). Different input data from different methods generate different outcomes and meet 
diverse requirements to help planners in mapping ECNs and prioritizing protection orders, 
which prompts researchers to explore the limitations and advantages of different modelling 
methods for assessing connectivity networks (e. g., RUIZ-GONZÁLEZ et al. 2014, ZELLER et 
al. 2018). 

While several lines of research have focused developing conservation plans based species-
level considerations (e. g., CUSHMAN et al. 2014, 2016, 2018, KASZTA et al. 2019, 2020a) 
and spatial landscape pattern concern (e. g., PENG et al. 2018, HOFMAN et al. 2018, CUSHMAN 
& MCGARIGAL 2019), few studies illustrate the interaction and synergy between species con-
servation and landscape patterns in ecological network design, particularly in the context of 
urban landscape planning. It is critical to provide practical guidance to city planners to help 
them to integrate science-based analyses with comprehensive spatial planning. This is of 
great significance for long-term and healthy growth of medium size cities to enable them to 
optimize planning designs for multiple objectives including quality of human life and also 
ecological sustainability and biodiversity conservation. 

China, as the world’s largest developing country, has been prioritizing wise and sustainable 
development. Jinping Xi proposed the Two Mountains Theory in 2005: “Mountains of gold 
and silver are not as good as lucid waters and lush mountains”. Therefore, how to protect the 
resilience and health of ecological systems is identified as a critically important topic in urban 
planning in China and around the world.  

While Luohe is a greening-focused city, relatively little study has illustrated the modelling 
methods to map and prioritize ECN in this region or elsewhere. Despite their broad usage in 
ecology, little is known about the differences in the predictions of different connectivity mod-
elling methods and their performance in terms of how well they predict functional connec-
tivity or ecological integrity (e. g., ZELLER et al. 2018), especially in urban settings. We ap-
plied LCP and cumulative resistant kernel analyses in UNICOR software (LANDGUTH et al. 
2012) to simulate, map and evaluate the functional ecological network in the Luohe region, 
China, which has seen large-scale intensive land use change. We have two goals: (1) to com-
pare the two methods’ predictions of strength, pattern and extensiveness of habitat connec-
tivity, and (2) to develop optimized ecological networks to prioritize protection spatially of 
habitat remnants and restoration of degraded habitat by identifying areas that are identified 
as important core areas and linkages across the two methods.  

2 Study Area 

The area of the Luohe region is situated in the central Henan province, with a total area of 
2617 km2. The municipal territory of the Luohe region administers three districts (Yuanhui 
district, Yancheng district and Shaoling district) and two counties (Wuyang county and 
Linying county) (Figure 1). Luohe city is a “model city for greening” which represents the 
highest honor of a city’s greening achievements. Therefore, Luohe’s management of spatial 
ECN can give an example for other medium sized cities across China and elsewhere in the 
world. 
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Fig. 1: Luohe region location in Henan Province 

3 Methods 

3.1 Imagery Acquisition and Preprocessing 
We downloaded Landsat images in February 09, 2020 (Coordination: WGS 84 / UTM zone 
50N) and in February 16, 2020 (Coordination: WGS 84 / UTM zone 49N) on EarthExplorer 
– USGS. The acquisition time of the two images is proximal enough to ensure comparable 
landscape conditions in the two dates without substantial land use and land cover change. 
1) The functions of Radiometric Calibration and FLAASH Atmospheric Correction were 

used to normalize the original Landsat images. Next, we classified land use type into 
water surface, green area (farmland and green space) and built-up area (built-up area and 
road) by using the Support Vector Machine Classification method in ENVI 5.3.  

2) We selected 500 ground truth points on Sentinel 2 imagery acquired June 01, 2020 to 
test the classification accuracy by using the function of Confusion Matrix Using Ground 
Truth ROIs in ENVI 5.3. 

3) We calculated several landscape metrics in FRAGSTATS (MCGARIGAL et al. 2012) to 
assess the structure and composition of the land use map. We chose Percentage of Land-
scape (PLAND), Patch Density (PD), Edge Density (ED), Radius of Gyration_Area-
Weighted Mean (GYRATE_AM), and Aggregation Index (AI) based on previous re-
search that showed these metrics were particularly valuable in ecological connectivity 
modelling (CUSHMAN et al. 2013a and 2012a). (CUSHMAN & MCGARIGAL 2008, CUSH-
MAN & MCGARIGAL 2019) illustrated the meaning of these metrics. 

3.2 Core Areas Identification  
We applied Morphological Spatial Pattern Analysis (MSPA) (SOILLE & VOGT 2009) to di-
vide the green space into Core, Islet, Perforation, Edge, Loop, Bridge, and Branch. The mean-
ing of these seven elements can be found in (SOILLE & VOGT 2009, CARLIER & MORAN 
2019). We selected 166 core areas from Core based the size of the Core (the 166 largest). 
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Then we input the 166 core areas into Conefor 2.6 (SAURA & TORNÉ 2009) to calculate the 
Degree of Probability of Connectivity (dPC) of every core area to choose the most important 
core areas. We selected the important core areas whose dPC is larger than 2 (Figure 3). 

  
Fig. 2: Land use classification in the Luohe region 

 
Fig. 3: Location of important core areas in the Luohe region 
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3.3 Resistance Surface Definition  
Resistant surfaces describe the difficulty a species will experience in moving through differ-
ent locations in the landscape in relation to such things land use types, topography, barrier 
features and other landscape characteristics that influence movement (CUSHMAN et al. 2006). 
Low resistance promotes species movements, high resistance slows down or blocks species 
movements. Based on expert opinion of relative resistance values of different land cover 
types for movement of animal species, we set the resistances of green space, farmland, water 
surface, building and road to 1, 30, 80, 100, 100 respectively. 

3.4 LCP Analysis 
Linkage Mapper maps least-cost corridors between core areas by using core areas and re-
sistant surface. LCP analysis identifies the lowest cost routes that animal species would move 
in the region between pairs of core areas, of which can be a patch, park, or conservation area 
(RUDNICK et al. 2012). We used important core areas and the resistance surface as inputs into 
the Linkage Mapper Tool (GALLO & GREENE 2018) by using the function of Build Network 
and Map Linkages to predict the cumulative resistant surface and LCPs among the important 
core areas.  

3.5 UNICOR Cumulative Resistant Kernel Analysis 
The UNICOR and network simulation model (LANDGUTH et al. 2012) includes resistant ker-
nel modelling (COMPTON et al. 2007) and factorial LCP modelling (CUSHMAN et al. 2009). 
Resistant kernel modelling represents the rate of expected movement for every pixel in the 
region (CUSHMAN et al. 2012b). Factorial LCP modelling predicts the movement corridors 
of species with different dispersal limits (CUSHMAN et al. 2013b). We applied six dispersal 
thresholds, including 1 km, 2 km, 4 km, 8 km, 16 km, 32 km (MATEO-SÁNCHEZ et al. 2014) 
which follows power-2 scaling from highly dispersal limited (1km) to highly mobile (32km 
species), to simulate multiple connectivity scenarios. We converted the important core areas 
into raster data at 100 m resolution, then converted raster core areas into 875 points to calcu-
late every core area pixel’s resistant kernel and factorial LCP. 

3.6 Optimized ecological networks mapping 
Evaluation of resistant kernel maps. We used RStudio to calculate the 75th percentile of 
every resistant kernel surface, then intersected all the kernels above the 75th percentile of 
every resistant kernel surface in ArcGIS to get the highest connectivity areas. 

Evaluation of corridors. We intersected LCP with factorial LCP to get three protection pri-
orities in spatial level. Then we buffered these three protection corridors with 60 m (resolu-
tion of Landsat images is 30 m) to calculate the land use type ratio within the corridor buffer.  

4 Results 

4.1 Land use classification 
1) Accuracy assessment (Table 1). The overall accuracy of the land use classification pro-

duced in this analysis was 99.3941%, with a Kappa Coefficient of 0.9867. This illustrates 
the land use classification is precise and sufficient for the remaining analyses in this 
study. 
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2) Fragmentation analysis (Table 2). The percentage of the landscape (PLAND) of farm-
land was the largest among land use types. With more than 70% of total land area, farm-
land is the matrix land use that will dominate the structure and function of this regional 
landscape, and likely affect the regional ECN. The patch density (PD) and edge density 
(ED) values of green space were quite large. The correlation length (GYRATE_AM) 
value of green space was the smallest. The aggregation index (AI) value of green space 
was quite low as well. Collectively, these metrics indicate that green space in the Luohe 
region is limited in extent and highly fragmented. 

Table 1: Accuracy assessment  

Class Commission  
(Percent) 

Omission 
(Percent) 

Prod. Acc. 
(Percent) 

User Acc. 
(Percent) 

Water surface 0.16 3.12 96.88 99.84 
Farmland 0.12 0.03 99.97 99.88 
Built-up area 1.09 1.90 98.10 98.91 
Green space 8.95 0.43 99.57 91.05 
Road 4.03 1.38 98.62 95.97 

Table 2: Class metrics of land use classification  

Class PLAND PD ED GYRATE_AM AI 
Water surface 0.6599 0.6420 2.7780 1096.1017 67.3099 
Farmland 71.4652 4.7907 62.7221 7032.1139 93.3500 
Built-up area 14.5615 5.5365 51.4971 417.9396 73.5571 
Green space 11.2809 13.4535 61.7345 220.6607 58.9615 
Road 2.0325 1.9101 14.3381 9879.7820 47.2090 

4.2 Core area identification 
MSPA analysis showed Core green space comprises 1.62% of landscape extent; Islet, indi-
cating isolated green space, accounts for 4.60%; Perforation and Edge (inner and outer green 
space boundary) are 0.01% and 2.28% respectively, Loop and Bridge (areas connecting green 
space patches) are 0.29% and 0.64% respectively, and Branch (linkages between main core 
areas) is 1.83%. 166 core areas were selected by MSPA analysis to calculate dPC value. From 
these 166 total core areas, 17 important core areas were selected in this study (Figure 3) by 
dPC value. The core areas were located equally in the Luohe region. 

4.3 LCP analysis 
The cumulative resistance surface, or cost distance map (e. g., CUSHMAN et al. 2010a) repre-
sents the minimum movement cost from any source location to all locations in the landscape. 
A high-cost distance value means that a given location in the landscape is relatively inacces-
sible from any source, while a low-cost distance value indicates functional proximity to 
source locations, based on cumulative resistance. The value of cumulative resistance was 
defined by the cost-distance from core areas across the resistance map (Figure 4). Areas near 
to core areas and between two core areas generally had relatively low cumulative resistance. 
The LCPs produce vector corridors between pairs of source points at a given dispersal dis-
tance. They do not show the corridor strength, and passed through all the core areas. That 
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means LCP analysis only considered the landscape configuration effects and did not consider 
species’ dispersal limits (Figure 4). 

 
Fig. 4: 
LCP analysis 

4.4 UNICOR cumulative resistant kernel and factorial least-cost path 
analysis  

Resistant kernels represent the connectivity of species’ movement (COMPTON et al. 2007). A 
high value indicates a high rate of expected movement through that location in the landscape 
given the source point distribution, density, resistance of the landscape and dispersal ability 
of the species. A low value indicates low expected rates of movement (e. g., CUSHMAN et al. 
2012b, KASZTA et al. 2019, 2020a). The resistant kernels (Figure 5) increased in extent and 
strength as the dispersal thresholds increased.  

Factorial LCPs represent the most optimal potential routes that species would move in con-
necting all pairs of source points at a given dispersal threshold and on a given resistance 
surface (CUSHMAN et al. 2009). The number of least cost paths passing through each cell of 
the network in the factorial LCP analysis increases as the dispersal threshold increased. The 
factorial LCPs value is a measure of expected relative centrality of each location in the con-
nectivity network, which is related to the rate at which a species would move through that 
location in the network if moving optimally as a function of resistance among pairs of source 
points.  

The value of cumulative resistant kernels and the number of the factorial LCP (strength) 
changed markedly with dispersal abilities. The functional connectivity network of species 
with dispersal abilities ≤ 2 km were very sensitive to the interaction between dispersal ability 
and the structure of landscape resistance. Species with dispersal 4 km and 8 km showed mod-
erate sensitivity in the factorial LCP and modest resistant kernel value. The value of resistant 
kernel surfaces and the number of the factorial LCP changed slightly and remined unchanged 
respectively. That means species with dispersal abilities ≥ 16 km were not highly sensitive 
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to landscape configuration. This shows a scale dependent effect on network connectivity as 
a function of dispersal ability, as seen in other studies (e. g., CUSHMAN et al. 2010b, 2016) in 
which below a certain threshold of dispersal ability the network becomes rapidly attenuated 
and fragmented. 

 
Fig. 5: UNICOR cumulative resistant kernel analysis 

4.5 Protection priority 
Spatially prioritizing ECN could help planners to optimally arrange green spaces to maximize 
their ecological resilience and minimize their financial cost (e. g., RUIZ-GONZÁLEZ et al. 
2014, KASZTA et al. 2019, 2020b). The overlapping area of all the kernels above 75th percen-
tile of every resistant kernel surface was mostly in Yancheng district (Fig. 6). We intersected 
LCPs with a 2 km threshold scenario to get the first protection priority, intersected LCPs with 
8 km threshold scenario to get the second protection priority, removed core areas from 8 km 
threshold scenario to get the third protection priority (Fig. 7). Land use type ratio within the 
corridor buffer (Table 3) showed most corridors are along green space and farmland. 

Table 3: Land use type ratio within the corridor buffer 

Land use types The ratio (%) of first 
protection priority 

The ratio (%) of second 
protection priority 

The ratio (%) of third 
protection priority 

Water surface 2.93 1.74 1.55 
Farmland 33.1 35.81 28.56 
Built-up area 7.83 8.28 6.2 
Green space 53.37 51.97 62 
Road 2.77 2.2 1.69 
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Fig. 6: 
Overlapping area of 75th per-
centile of every resistant kernel 
surface. 

 

 

Fig. 7: 
Protection priority rank in 
Luohe region. 

5 Discussion 

The main purpose of this study is to compare two methods frequently used in mapping ECNs 
to explore the accessibility and applicability of these two methods, and to rigorously priori-
tize the design of the ECN in the Luohe region. Our main results showed the differences in 
the predictions produced by cumulative resistant surface, resistant kernel, LCP and factorial 
LCP across a range of dispersal abilities. An important product of our analysis is a quantita-
tive and objective prioritization of ECN design and protection importance. We identified six 
specific points for further discussion:  
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1) Core area and source points. LCP analysis used individual habitat patches as core areas 
or linkage zones, resulting in the selection of 17 core areas as sources for the LCP to 
produce simplified ECNs. UNICOR analyses converted each habitat patch into sets of 
source points, which has the major advantage of weighting core areas proportional to 
their size (or the population size of the species that they support). This resulted in the 
conversion of the 17 core areas into 875 source points, which is a great improvement 
over the Linkage Mapper approach, as distribution and density of the source population 
being modelled has dominant effects on predictions of connectivity (e. g., CUSHMAN et 
al. 2013c, 2016, 2018). 

2) Cumulative resistant surface and resistant kernel analysis. Cumulative resistant sur-
faces only reflect the total cost of species movement across the landscape from source 
locations. This is limited given that it doesn’t account for the density of source points 
nor the dispersal ability of the species. Resistant kernel analysis (COMPTON et al. 2007) 
greatly improves this by explicitly combining the influences of both dispersal ability and 
the density and distribution of the source population, resulting in the calculation of the 
incidence function of expected movement rates through every cell in the landscape (e. g., 
CUSHMAN et al 2014, KASTZA et al. 2018). Similar to CUSHMAN et al. (2016) and (2013c), 
our results showed very strong dependence of predicted extent and connectivity of the 
ECN depending on the dispersal threshold employed in resistant kernel analysis. Im-
portantly, our results show that species with dispersal abilities ≤ 2 km cannot traverse 
among green area patches across most of the landscape, and the connectivity of the green 
area network increases rapidly and non-linearly with increasing dispersal ability (like 
seen by CUSHMAN et al. 2016 for lions in Southern Africa). 

3) LCP and factorial LCP. LCPs were vector paths that only showed the spatial pattern 
of ECNs without the corridor strength, and which passed through all the core areas be-
cause they do not consider species’ dispersal limits. Factorial LCPs, in contrast, provide 
much richer information including the strength of corridors and the influence of dispersal 
threshold on the extent and strength of the corridor network, accounting for the distribu-
tion and density of the source population, the dispersal ability of the species and the 
resistance of the landscape.  

4) Given the above comparisons we strongly favor the combined use of factorial LCP and 
resistant kernel analysis over traditional cumulative resistance and LCP analyses (as for 
example implemented in Linkage Mapper) given they provide much more biologically 
rigorous, scale dependent predictions that account for the density and distribution of the 
source population, the dispersal ability of the species and the resistance of the landscape. 
When applied in combination these two methods enable rigorous prediction of the most 
important core areas and the strongest corridor linkages among them given particular 
distributions and dispersal abilities of the target organisms. This combined approach has 
been used productively in the United States (CUSHMAN et al. 2013c, 2014), Africa 
(CUSHMAN et al. 2016, 2018), Southeast Asia (KASTZA et al. 2020a) and Western Asia 
(KHOSRAVI et al. 2018, ASHFRADZADEH et al. 2020). 

5) The longest dispersal threshold was 32 km in this analysis. We based this on the extent 
of the factorial LCP network, which spans 76 km from east to west and 64 km from north 
to south in the Luohe region. The corridor strength and the spatial pattern of factorial 
LCP stayed unchanged with dispersal thresholds ≥ 16 km; thus, there is no need to 
explore dispersal thresholds greater than 32 km in this region. 
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6) Scope and Limitations. The analysis presented here identifies the most critical, scale-
dependent linkages among the main green-space core areas in the Luohe region and pri-
oritizes them based on their importance. This provides an unprecedented quantitative 
means to guide landscape planning to promote ecological sustainability, human health 
and biodiversity in urban landscapes. This analysis evaluated connectivity in a synoptic 
(CUSHMAN et al. 2014), scale-dependent (CUSHMAN et al. 2016) manner. A number of 
recent research efforts have shown that scale-dependent synoptic analysis is critical to 
provide rigorous predictions of functional connectivity and evaluation of ECN (e. g., 
CUSHMAN et al. 2013b, 2014, 2016, 2018, KASATA et al. 2018, KHOSRAVI et al. 2018, 
ASHFRADZADEH et al. 2020). This is a strength of our analysis. We based our analysis 
on a classified land use map that was extremely accurate, which is also a strength. How-
ever, functional connectivity of ecological processes or biological processes is not the 
same as structural connectivity of a land cover map. Our analysis assumed expert values 
for the resistance of different land use classes, which is not ideal and may not reflect the 
actual resistance experienced by different organisms (e. g., MATEO-SÁNCHEZ et al. 
2015a, b, SHIRK et al. 2010, WASSERMAN et al. 2010, ZELLER et al. 2018). It would be 
desirable, therefore, to conduct empirical optimization of both the distribution and den-
sity of the source populations of species of interest (given the dominant effect this has 
on connectivity predictions; e. g., CUSHMAN et al. 2013c), the resistance of the landscape 
for their movement (e. g., CUSHMAN et al. 2006, CUSHMAN and LEWIS 2010), and their 
dispersal abilities (e. g., CUSHMAN et al. 2014, 2016). This would best be done through 
extensive biodiversity monitoring networks deployed across the green-space network 
(e. g., LUCID et al. 2018, 2019, 2021, ROBINSON et al. 2017), coupled with telemetry 
studies of dispersal in focal taxa (e. g., CUSHMAN and LEWIS 2010, ELLIOT et al. 2014) 
or landscape genetics (e. g., CUSHMAN et al. 2006, SHIRK et al. 2010, WASSERMAN et al. 
2010, MATEO-SÁNCHEZ et al. 2015b, ZELLER et al. 2018). These datasets and connec-
tivity analyses based on them would allow for data-driven assessment of ECN effective-
ness, as has been done for several species in the United States (e. g., WASSERMAN et al. 
2012, 2013, CUSHMAN et al. 2009, 2013b, 2012b) and Europe (RUIZ-GONZÁLEZ et al. 
2014). In the present, however, the current analyses provide a robust and informative 
assessment of the patterns of ECN connectivity in a synoptic, scale dependent manner, 
enabling localization and prioritization of land use actions to enhance the extensiveness, 
strength and resilience of the green space network in the Luohe region.  

6 Conclusion and Outlook 

Overall, our analysis suggested five main conclusions: 

1) The LCP analysis provided a simple and easy-to-understand illustration of potential 
paths connecting habitat patches, but grossly underpredicted areas that the species may 
be using for movement because the results only contained very narrow paths and lacked 
the consideration of species’ dispersal limit.  

2) Factorial LCP analysis, such as implemented in UNICOR, greatly improves the utility 
of LCP analysis by enabling it to account for the density and distribution of a source 
population and the dispersal ability of the species in predicting spatially synoptic patterns 
of ECN strength. 
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3) Cost-distance or cumulative resistance methods that do not account for source point dis-
tribution and density or the dispersal ability of the species are also very limited and po-
tentially misleading. 

4) Resistant kernel modelling, such as implemented in UNICOR, resolves the limitations 
of traditional cost-distance and cumulative resistance analysis by enabling explicit ac-
counting for the influences of spatially varying distribution and density of the focal spe-
cies population as well as the critical influences of its dispersal ability. 

5) The combination of factorial least cost path and resistant kernel analysis jointly provide 
complementary and synergistic information that provides a strong suite of methods for 
comprehensive assessment of ECN extensiveness, effectiveness and prioritization of 
landscape scenarios to optimize ECN in the future. 
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