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Abstract: Technological advancements have become ubiquitous within landscape architecture. One of 
the latest advancements is in Artificial Intelligence, including techniques such as Machine Learning, 
Artificial Neural Networks and problem optimization. These advancements have already worked their 
way into landscape architecture. In this theoretical paper we briefly identify what the state of the art in 
AI is, as well as its potential and limitations in the discipline. Specifically, we argue for the need to 
create a disciplinary ontology to make knowledge explicit and shared amongst humans and machines. 
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1 Introduction 

In recent years landscape architecture has pushed advances in design computation and infor-
mation modelling beyond the building, embedding them into curriculum and professional 
workflows, and experimenting with design processes such as terrain modelling (HERMANS-
DORFER et al. 2020, HURKXKENS et al. 2017), monitoring public spaces for design assump-
tions (ZEIGER 2019), modelling uncertainty in a ‘synthetic’ ecology (CANTRELL & HOLTZ-
MANN 2014), and reflecting temporality in CAD workflows (TEBYANIAN 2016). The use of 
computation in landscape design is burgeoning and shows signs of sustained growth in the 
future (GEORGE & SUMMERLIN 2019). Some landscape architectural researchers and practi-
tioners have begun imagining the potential for a greater disciplinary discourse on computa-
tional design and parametricism (CANTRELL & MEKIES 2018), proposing that landscape is a 
profoundly more complex system than that of a building or singular piece of infrastructure 
and thus needs to construct a system more responsive to the many factors and contexts in 
which it is embedded (CANTRELL & HOLTZMANN 2015). Yet because landscape is such a 
fundamentally expansive medium, the array of possible computational tools to apply to its 
design is also much more vast than the more manageable scope of something like architec-
ture, and can thus lead to digital overload (FRICKER et al. 2013). 

For all the diverse ways designers engage with other disciplines, most simply do not have the 
time, knowledge, or cognitive capacity to account for the range of intersectional aspects of 
today’s design problems. To this end, there is new discourse emerging around the potential 
of artificial intelligence to help facilitate such limitations. It includes topics like laying the 
historical groundwork for AI so as to create better understanding in the profession (ZHANG 

2020), proposing machine learning primers and ontologies for landscape design (ALINA et al. 
2016, TEBYANIAN 2020), gauging the potential for AI in coastal adaptation design (ZHANG 

& BOWES 2019), and even envisaging an automated, post-human ecology (CANTRELL et al. 
2017). As the trend of AI takes hold in design disciplines, there is an essential need to build 
a shared language between humans and machines, especially ensuring that assumptions, vo-
cabularies and knowledge are explicit. This paper lays a theoretical foundation for the devel-
opment of an information science ontology in the landscape architecture domain. Ontologies 
can improve problem solving because they make knowledge explicit, open and reusable by 
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AI systems (and humans). The development of a landscape architecture ontology will enable 
an AI system to more easily gather and synthesize knowledge while elucidating domain as-
sumptions and philosophies of design. 

2 Developing a Landscape Design Ontology for AI  

2.1 Clarifying the Term Artificial Intelligence 
When the term ‘artificial intelligence’ is presented to a general audience, it is more likely to 
elicit troubling images from Sci-Fi movies than a basic understanding of AI research (FAST 
& HORVITZ 2016). Thus, before we delve into the research questions, it is important to un-
derstand what AI is, how it works and why it might make us feel simultaneously excited and 
a little uneasy. The Oxford Dictionary defines Artificial Intelligence as “…computer systems 
able to perform tasks that normally require human intelligence, such as visual perception, 
speech recognition, decision-making, and translation between languages.” Though the con-
cept of it has been in development for centuries (BUCHANAN 2005, POOLE & MACKWORTH 
2010), the beginnings of modern AI computing are often understood to have spawned in 1950 
when Alan Turing posited: “can machines think?” and while he soon discovered that they 
could indeed, the bigger question he came away with was whether or not machines are capa-
ble of thinking like humans (TURING 2009). This highlights an important distinction often 
overlooked by the AI layperson; AI capability is different from AI functionality. Before AI 
attains human capabilities like abstract thought, empathy, and understanding meaning, it has 
to master the basic functions that build those capabilities. Functions include effective use of 
limited memory, reaction to stimuli, and real-time decision making (TECHLIANCE 2020). 
Some of the latest inquiries into the state of the field claim there are still many barriers to 
crash before reaching that milestone (MITCHELL 2020). 

Nearly every branch of research or application of AI requires creating ontologies, methods, 
data mining or expert-based learning and developing statistical approaches to facilitate rea-
soning. In each instance, humans are involved in building and maintaining these systems, but 
the key defining element is that machines are the curator of learning. This is done through 
language and computational methods (e.g. statistics) that can amalgamate large datasets and 
be trained (using humans to fill gaps of learning). For instance, the detection of cancers can 
be done by allowing a computer to read radiological images and statistically characterize 
them to identify anomalies (AMERICAN ASSOCIATION FOR CANCER 2018, [1]); learning rein-
forcement happens when the computer is trained by a human to identify that the anomaly is 
a cancer. The more images read and correct detections made, the better the statistical models 
become. In this case reasoning is a statistically based outcome of learned information. How-
ever, such outcomes are not possible without abundant data, a clear language, and a reliable 
set of rules to follow. 

2.2 What is an Ontology?  
Ontology, philosophically understood, is the study of the nature of being or existence. When 
applied within the context of computer science and artificial intelligence, an ontology is a 
noun rather than a state; a formal structure of definitions, components, concepts, entities and 
the relationships between these that work to form an AI reality (CIMIANO 2006). Thus, creat-
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ing an ontology necessitates the creation of language (syntax and semantics), rules, knowl-
edge and their relations (POOLE & MACKWORTH 2010). Human knowledge is gained by an 
experiential and intentional process of being in existence (e.g. a radiologist seeing imagery 
of cancer and discovering that cancer is present). Just as we each gain knowledge as a result 
of our learned language and experiences, an AI system must also have an explicit structure 
of language and experiences in order to learn (e.g. exposure to statistical properties of cancer 
in an image). The act of building an ontology can be likened to an act of teaching definitions 
and relationships between phenomena (or things). Teaching definitions, however, do not al-
ways provide critical nuance and context; instead, that is learned by process.  

 
Fig. 1: Abstraction of ontological framework showing nested hierarchies and illustrated  

relationships (dashed lines). In a developed ontology, each oval would have a defi-
nition including syntax, unit, description, properties and synonyms. 

For AI to develop it requires access to an ontology, which is often implicitly created by the 
programmer at the time of development. When programming an AI system, programmers 
develop classes, functions, variables, units and naming conventions in code. The creation of 
these is often done within a well-defined conceptual framework that has multiple degrees of 
formality from informal naming conventions to predefined reserve variables, functions and 
constants. An ontology is a formal way to express definitions and linkages between terms. It 
also enables AI systems and human coders to use, reuse, redefine and expand upon the on-
tology. The building blocks of an ontology often begin through an abstraction of key con-
cepts, items, categories, et cetera, that are depicted through a hierarchical structure, as shown 
in Figure 1 (a practical example is shown later in Figure 2). The hierarchy provides an explicit 
rule of how things are connected, enabling the system to learn these connections and be con-
nected to other published ontologies. For instance, a landscape architecture ontology could 
reuse a plant ontology developed by biologists, or a geoscience ontology that provides prop-
erties of soils, minerals and geophysical history. A relationship between these three ontolo-
gies means that an AI system would instantaneously have access to knowledge from each of 
these systems, analogous to Neo’s rapid skill acquisition in The Matrix. 

Crafting an AI ontology is at its core an act of assemblage. Rather than working from a tabula 
rasa, the program is nearly always built by explicitly remixing existing frameworks and ap-
plying them to problems in new contexts (JOHNSON-EILOLA & SELBER 2007). Such repro-
duction is considered best practice and often even a requirement if different applications are 
to communicate with one another (NOY & MCGUINESS 2001). A work of landscape architec-
ture is no different. A site with all its components is shaped physically, culturally and func-
tionally by remixing known ontologies of design processes and applying them to the problem 
at hand. Yet, understanding of these ontologies is markedly more implicit in practice than we 
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often realize. For example, when a human designer composes the planting design for a pocket 
park, they generally go through the motions of analysing site conditions, developing the 
planting concept, selecting a plant palette (perhaps organizing it using the usual categories 
trees, shrubs, forbs and grasses, etc.), laying out a configuration for the selected plants in plan 
view diagram, and making a schedule for the implementation of the design. If the average 
entry-level designer were instructed to carry out these steps, the end goal would seem rela-
tively clear. However, for an AI the goal would need to be more clearly defined. For instance, 
the AI needs to know what plants are, how to categorize them, what properties are important 
and what site conditions they thrive in. In this case, the fundamental questions of what, how, 
where, when, and why are procedural rather than theoretical. 

2.3 Translating Practice into Language: The Question of an Ontology for 
Landscape Architecture 

Developing a landscape architecture ontology may be a unique challenge because it hardly 
fits into the structured framework of a definition. This happens because the design process is 
culturally influenced and steeped in qualitative interpretation. Thus, a general glossary of 
landscape architecture terms would need to include cultural nuances in the meaning of such 
terms in different places as well as the interdisciplinary ways such terms can be measured 
(HERRINGTON 2013). John Stilgoe’s “What is Landscape?” (2015) tackles such a task by 
revealing the complexity embedded in the attempt to understand what landscape (and there-
fore, landscape architecture) is. His tracking of the etymology of the word landscape across 
cultures and ages gives a sense of the vastness and extent of such nuances.  

However, despite such hardness in defining landscape in a non-reductive way, such activity 
exists, and is practiced daily by designers around the world. How is that possible? As re-
searched extensively in the field of cognition and cognitive science, the design process relies 
on unwritten knowledge, something practitioners learn by experience without referring to 
extensive verbal codification. Donald Schon used to call it “reflection in action” (SCHON 
1983). As mentioned, AI requires an ontology, a syntax or a clear definition of the activity in 
order to automate it. Considering the complexity of the landscape architecture practice, what 
would be the ontology of landscape architecture, and how does one embark on the process of 
developing it? As we consider the development of a landscape architecture ontology, we must 
also explore our existential framework as designers - are we unique, a mere construct of other 
existing ontological domains or some combination thereof? If we assume disciplinary 
uniqueness, a direct adoption of other ontologies may not be compatible with our own. The 
ontology of landscape architecture must then include terms, associations and concepts en-
demic to practice and not just those borrowed from others. Thus, the pursuit of an AI ontology 
for landscape architecture, that is comprehensive and interdisciplinary, needs to be carefully 
crafted for AI functionality to be fully integrated into practice.  

3 Example Ontology Using Fresh Kills Park Master Plan 

With this understanding, we propose assembling a more explicit and programmable ontolog-
ical structure for landscape architecture. One that compiles the already rich and diverse 
frameworks of the discipline and defines them procedurally so that the all but inevitable creep 
of AI applications into landscape practice evolves with, rather than supplants the role of the 
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designer. To demonstrate the complexity of this task, we construct a sample ontology for one 
section of a well-known, well-documented work of landscape architecture: the Fresh Kills 
Park Draft Master Plan. The plan was developed over five years following the closing of New 
York City’s Staten Island’s Fresh Kills Landfill in 2001. The plan document continues to 
guide the phasing of the project today. Its conceptual framework, known as Lifescape, has 
become one of the most highlighted and critiqued poster children of the Landscape Urbanist 
movement, whether for its socio-ecological implications as a large park, its conceptual cen-
tring on cutting edge theories of ecological succession, or the role it played pushing the dis-
cipline into a new chapter (BEARDSLEY 2007, CORNER 2006, WALDHEIM 2016). Lifescape is 
defined in the report as the following: 

“Lifescape is an ecological process of environmental reclamation and renewal on a vast 
scale, recovering not only the health and biodiversity of ecosystems across the site, but 
also the spirit and imagination of people who will use the new park. Lifescape is about 
the dynamic cultivation of new ecologies at Fresh Kills over time – ecologies of soil, 
air and water; of vegetation and wildlife; of program and human activity; of financing, 
stewardship and adaptive management; of environmental technology, renewable energy 
and education; and of new forms of interaction among people, nature, technology and 
the passage of time.”(FIELD OPERATIONS 2006)  

This narrative statement is both broad and encompassing. It holds within it a variety of terms 
and concepts that would create a vast network of possible ontologies spanning far outside the 
scope of this exercise. For our purposes, we will focus on deriving a hierarchal ontology for 
just one aspect of the Master Plan which we consider to be a major driving force of the 
Lifescape concept, the Landscape and Habitat Plan; more specifically, the planting palette of 
that plan (see Draft Master Plan, Section 2.13, [2]). In it, there are three major landscape 
types proposed (wetlands, grasslands, woodlands) each with its own subsets of habitat types 
(e.g. salt marsh, fens, eastern dry prairie, birch thicket, etc.). For each habitat type, a palette 
of plants was selected to fit the priorities of low maintenance and ecological appropriateness. 

In Figure 2, we have taken some of these elements and organized them into the beginnings 
of a legible hierarchy where a thing is the root, habitat types are the categories and subtypes, 
and the plants the items. This framework would then be discretized using descriptors called 
object properties, which delineate the relationships within the hierarchy as well as those be-
tween different sets of hierarchies. An AI would learn from this ontology, for instance, that 
a Morainal Oak plant community is a subtype of the habitats which make up the landscape 
category Woodland and is comprised of trees such as oaks, beeches, and hickories (with spe-
cific species denoted) and shrubs like arrow wood and spice bush. These connections might 
utilize a property like ‘is part of’ or ‘develops from’ to give meaning to their place in the 
hierarchy. Now that this habitat type is explicitly defined, it can be reused, modified, aug-
mented and adapted to other design opportunities by an AI. Yet, it also provides benefits for 
human users to more quickly observe and understand the elements that make up this specific 
habitat type. This same process is done for every habitat type, where some plants are also 
“Part of” other habitat types. 
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Fig. 2: Abstraction of ontology for Morainal Oak Woodland from the Fresh Kills Park Hab-

itat Plan. Solid lines are hierarchical, light grey dashed lines are relational. 

While assembling this habitat ontology, it quickly becomes clear that, given the available 
information in the master plan, it can only apply to that specific context and that the context 
itself is sparsely defined. The text provides no adjacent ontological contexts with which to 
associate it because it assumes an implicit understanding of its components e.g. the landscape 
architects assume the readers can reasonably know what a landscape is, what a plant is, what 
a tree is, where each these come from, how they relate to other examples of the same and 
what makes them specifically relevant to their prescribed type. A machine cannot know these 
things unless it is taught by a human expert (even through the reuse of other ontologies). Such 
an exercise offers an opportunity not only to lay out the terms of AI’s engagement with prac-
tice but also to self-reflect and clarify what we understand practice to be and how we think it 
sits in relation to other disciplines. 

4 Reflections: Limitations, Futures, Expectations 

We recognize that an effort to assemble an entire ontology of landscape architecture in one 
paper or proceeding would be futile. Our intent is merely to initiate a call to attention toward 
the need for an explicit definition of terms and relationships of things within the landscape 
architecture domain. As digital landscape architecture professionals, we can be leaders in the 
AI-LA dialectic and lead the way in constructing language, skill sets, ethics, and best prac-
tices for environmental design. It should be emphasized that an appeal for further ontological 
structure in our digital practice does not diminish current or former structures of landscape 
practice; in our view, adapting the programmer perspective of reusing and expanding existing 
ontologies (e.g. building our framework utilizing the vast and well-established repositories 
in venues like AberOWL or GitHub and then building it right back into those repositories so 
it can be added to by the community at large) only deepens respect for them and affords an 
opportunity to better understand their nuance. 

This is not a modernist call for historical erasure, nor is it a postmodernist plea for refracting 
our practice into endless language games. It is a challenge we extend to all in the discipline 
to have more organized and direct discourse on the application of artificial intelligence. The 
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intent of this process is not to facilitate reductionism, on the contrary discourse facilitates 
clarity of our own language. Further, while AI in landscape architecture may be perceived as 
nascent within practice, if we do not lead this discourse we risk letting it be defined by those 
who lack knowledge of our practice and thus lack of embodiment of our language. Rather, 
taking the reins on developing an ontology enables landscape architects to facilitate control 
of our own language evolution. A clear, yet flexible structure of language allows us to chal-
lenge and anticipate the impending pervasion of AI into the industry rather than be blindsided 
by it. To this end, control of language begets control of agency guiding the design of new AI 
tools that take our work to places never before imagined, while still governing the creative 
process and avoiding a banalization of the landscape designer’s role. This inevitably means 
reassessing the creative process itself and our role in it.  
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