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Abstract: Invasive alien species are one of the main threats to worldwide biodiversity loss. Unmanned 
aerial vehicles with multispectral sensors offer a cost-effective alternative to monitor invasive plant 
species at a centimetre scale. Giant Goldenrod (Solidago gigantea) is one of the most problematic in-
vasive alien plant species in Switzerland and controlling this species – especially in nature protection 
areas – is a priority. In this study, a methodology is developed to detect the Giant Goldenrod coverage 
via unmanned aerial vehicle (UAV) equipped with multispectral sensors. Very high resolution maps 
(6.5 cm) are produced and high accuracy is achieved for the classification of the Giant Goldenrod cov-
erage with a kappa coefficient of 0.902 and an overall accuracy of 92.12%. These results indicate that 
UAV equipped with multispectral sensors is a valuable tool in monitoring and combatting invasive 
alien species. 
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1 Introduction 

Global biodiversity loss is alarming with current extinction rates likely to be 1000 times the 
background extinction rates (PIMM et al. 2014). The IPBES 2019 report states that around 
one million species are threatened with extinction with the underlying reasons for this biodi-
versity crisis being land-use changes, pollution, climate change, over-harvesting, and inva-
sive alien species (IPBES 2019, DASGUPTA 2020). Invasive alien species (IAS) are defined 
as non-native species with dispersal potential extending their natural range to new ecosys-
tems, survive and reproduce in these new ecosystems, and subsequently becoming a threat to 
native species (IUCN 2000). Hence, IAS are species that have been translocated beyond their 
natural biogeographical range by humans and that are causing economical, ecological, and 
human health damage or at least have the potential to cause harm (GIGON & WEBER 2005). 
IAS are found in every taxonomic group from viruses to mammals and their impacts are 
observed in every ecosystem type on Earth causing hundreds of extinctions in native species 
(IUCN 2000). 

Since the arrival of Christopher Columbus in the Americas in October 1492, the pace of the 
world-wide translocation of non-native species has continuously increased with 37% of all 
first records on non-native species reported in the most recent decades (1970-2014; SEEBENS 
et al. 2017). Worldwide, 3.7% of the taxa in the global flora are now known to be naturalized 
(VAN KLEUNEN et al. 2020). Even though only a fraction of the naturalized species introduced 
by humans from other biogeographical regions becomes invasive (MACK et al. 2000), the 
collapse of biogeographical barriers due to global trade, new technologies, and transport is a 
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major threat to biodiversity and ecosystem services (KUEFFER 2017), has implications for 
human health, and causes substantial economic damage (PIMENTEL et al. 2001, PIMENTEL et 
al. 2005). Hence, invasive alien species (IAS) are a global concern and explicitly treated in 
the Aichi Target 9 of the Convention on Biological Diversity (CBD 2011). Specific aims of 
the Aichi target 9 are the control and management as well as the prevention of introduction 
and establishment of priority invasive species (CBD 2011). 

Introduced in the 18th century from its native North American habitats, the giant Goldenrod 
(Solidago gigantea) was first distributed among Botanical Gardens in Europe and from there 
escaped a century after its introduction to natural mesic habitats especially endangering spe-
cies-rich wetlands (VOSER-HUBER 1983, WEBER & JAKOBS 2005, BOTTA-DUKÁT & DANCZA 
2008). Based on herbarium specimens and literature data, the spread of this species was es-
timated to reach 910 km2 per year (WEBER 1998).  

There are ca. 500-600 neophytes in Switzerland and of these 58 are considered invasive or 
potentially invasive (Neophyten (infoflora.ch)). The Giant Goldenrod is one of the most com-
mon invasive neophytes in Switzerland and since 2008 nationwide legally listed as forbidden 
to plant. The success of invasive goldenrods in Europe can be attributed to their high com-
petitive strength and adaptability (ECKERT et al. 2020). A single plant can produce up to 
10,000 wind dispersed seeds per year and its rhizome (up to 300 sprouts/m2) allows the plant, 
once established, to propagate a colonised site very efficiently. In contrast to their original 
area of distribution in America, the plants in Europe are hardly damaged by insects (JAKOBS 
et al. 2004). 

In Switzerland, especially in fens, the original vegetation is under pressure from the invasive 
Solidago gigantea. Therefore, monitoring of S. gigantea is crucial to protect the vulnerable 
local species. Combatting and monitoring the S. gigantea in Europe is, however, expensive 
and mostly ineffective. Remote sensing with Unmanned Aerial Vehicles (UAVs) offers ex-
panded cost-effective opportunities to detect and monitor invasive species on a high spatial 
resolution up to a centimetre scale. The aim of this study was to identify Giant Goldenrod 
stands by creating high resolution multispectral maps acquired via drone images, monitoring 
remnant nature conservation areas of once extensive pre-Alpine wetlands. 

1.1 Study Area 
The areal coverage of wetlands in Switzerland dramatically decreased from 1850-2010, be-
tween 92 to 94% (STUBER & BÜRGI 2018). The study area – Entensee Pond – belongs to one 
of those wetland ecosystems that were at the brink of loss at the beginning of the 20th century. 
ProNatura Switzerland bought the area in 1938 and saved it from drainage. Today, in winter 
and spring, parts of the wet meadows are flooded by ditches fed by a nearby creek.  

The Entensee Pond is located in the Northeastern part of Switzerland in the Canton of St. 
Gallen at 407 m a.s.l. (Figure 1a). It is part of the Kaltbrunner Riet, which is listed in the 
Swiss Federal Inventory of water and migratory bird reserves of international and national 
importance (Ramsar site). It is one of the last remainders of once an extensive wetland, breed-
ing and resting ground for birds, spawning areas for amphibians, and ecologically significant 
for rare plants such as rice cut grass (Leersia oryzoides) and yellow flat sedge (Cyperus fla-
vescens) (Naturschutzgebiet Kaltbrunner Riet (SG) | Pro Natura). However, especially in spe-
cies-rich purple moor-grass fen meadows (Molinion) with local and vulnerable species and 
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often dominated by Reed (Phragmites australis (Cav.) Steud), a heavy giant goldenrod cover 
is observed (Figure 1e). 

Combatting of the giant goldenrod in the area is continuing since 2013, but without major 
success. Although only in 2016, 1.4 tons of goldenrod have been removed from the nearby 
Kaltbrunner Riet, Solidago gigantea expansion is still a major threat to local species in the 
fragile ecosystem (PRONATURA 2016). 

2 Materials & Methods 

2.1 Data Acquisition & Materials 
Due to the protected area status of the Entensee Pond, a limited time frame in August 2020, 
peak flowering time of the Giant Goldenrod and least disturbing time for birds, was granted 
to conduct field research and data acquisition. Data acquisition was planned in three different 
stages. In the first stage, field observations were conducted to document the dominant vege-
tation types in the area. Planning and simulating flights were the next stage of acquiring drone 
data, requiring careful preparation to achieve targeted coverage of different areas. Two flights 
were performed on August 17, 2020 by using an eBee SenseFly X drone together with eMo-
tion3 ground station flight management software, which is used for planning, simulating, and 
monitoring the flights. Red Green and Blue (RGB) images were acquired with a S.O.D.A 3D 
camera and multispectral images were acquired using a MicaSense RedEdge-MX Sensor 
(Wavelengths: Blue= 475 nm, Green= 560 nm, Red= 668 nm, Red Edge= 717 nm, and Near 
InfraRed= 840 nm). To perform the drone flights, a day with full cloud cover was chosen to 
reduce the effects of shading from trees on the ground. Full cloud cover also reduced the 
correction needs for different bands, especially for the blue band, compared to sunny condi-
tions (AKANDIL 2020). In the third stage, ground truth points were acquired with a GPS de-
vice (Leica iCON 70, Leica Geosystems, Heerbrugg, Switzerland) on August 30, 2020.  

2.2 Methods 
The data collected in the field research were first pre-processed to create the necessary or-
thomosaics, then classified, and finally validated by using the ground truth points (Table 1). 

Before each flight, weather conditions were documented and a MicaSense Calibrated Reflec-
tance Panel was utilized to capture the information about position of the sun and the sensor, 
and the irradiance data from the panel, indicating the light conditions of the flight and work-
ing as a control to adjust the rest of the pixels (MicaSense). Through radiometric calibration, 
digital numbers of the pixels in multispectral data were converted first to sensor reflectance 
and then to surface reflectance. Without robust calibration, the data acquired cannot be used 
for comparisons of images from different dates. Therefore, correct calibration is one of the 
crucial steps before the analysis, especially for future monitoring purposes. 

Each photo taken by the drone during the flight was assigned to its correct geographic coor-
dinates by a process called geotagging, which is another critical step for the accuracy of the 
maps and the Digital Surface Model (DSM). These geotagged photos are utilized to create 
orthomosaics for RGB and multispectral images in the Pix4D software. Very high resolution 
orthomosaics, 3.5 cm for RGB & DSM and 6.5 cm for multi spectral data, were generated 
(Figure 1c, Figure 1d). RGB and DSM were further resized to 6.5 cm resolution by using 
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nearest neighbour method in ENVI 5.4.1 image analysis software. False colour composites 
(FCC) were also created by using multispectral images (Figure 1b). Compared to medium 
resolution data in meters scale, very high resolution drone data at a centimetre scale extends 
the analysis opportunities profoundly. 

Table 1: Summary of the workflow performed in this research 

 

Spectral indices are produced by using two or more spectral bands to create new information 
related to biophysical parameters of interest (JONES & VAUGHAN 2010). To identify and mask 
the water surface area, the Blue Chromatic Coordinate (BCC) index was utilized, which is 
the ratio of Blue band to an aggregate of the Red, Green and Blue bands (MOORE et al. 2017). 
Illumination conditions play a significant role for the digital numbers of the blue band, which 
are sometimes inflated up to 50% under sunny conditions (AKANDIL 2020). To avoid this 
problem, the drone flights were performed under full cloud cover, therefore no atmospheric 
correction were needed to be able to separate surface water reliably via BCC. To isolate water 
bodies, the index value was set as above or equal to 0.334, indicating the blue band is domi-
nant in that pixel (Figure 1f). 

The DSM model was utilized to isolate the tree cover around the Entensee Pond. Along with 
the field research, the trees and observation tower nearby were classified and masked by 
setting the threshold in DSM model at 410 m a.s.l. and classified everything above as trees 
(Figure 1g). 

RICHARDS (1986) defines five stages in a supervised classification: 1) defining the ground 
cover types to classify, 2) choosing the training data representative of each class, 3) using 
this training data to calculate the band statistics going to be used in the classification algo-
rithm, 4) assigning each pixel to the possible classes based on the statistics, 5) producing the 
classification maps.  

Based on the field observations and orthomosaics, five different ground cover types to clas-
sify the area were defined: Giant Goldenrod (Solidago gigantea), Reed (Phragmites austra-
lis) – a plant species that is morphologically similar to Giant Goldenrod, Surface Water, 
Trees, and Mown & Other Vegetation. As the clonal goldenrods have two different pheno- 
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typic stages, the class was further divided to vegetative and flowering goldenrod before the 
analysis. After the classification, they were combined under the class “Giant Goldenrod”. A 
similar approach was taken for reed because the spectral footprint of reed plants growing in 
water or on land, was different. 

Training samples through region of interests (ROIs) were chosen for different classes accord-
ing to field observations with GPS data. CONGALTON (1991) recommends using at least 50 
samples for each class. Therefore, 198 pixels for each class were determined in the analysis. 
Jeffries-Matusita and Transformed Divergence (RICHARDS 1999) tests were implemented in 
ENVI to assess the separability of the different classes in RGB and FCC for different band 
combinations (Table 2). We achieved the best result in FCC by combining Near Infrared 
(NIR), Red Edge (RE), and Green bands. Jeffries-Matusita and Transformed Divergence test 
result in values between 0 and 2. Any value above 1.9 indicates the classes are separable and 
any value between 1.7 – 1.9 is considered fairly good (JENSEN 1996).  

Table 2: ROIs Separability test based on Jeffries-Matusita and Transformed Divergence. 
Bold numbers indicate in which band combination higher separability results were 
achieved. 

Pairs to Separate In RGB Bands In False Colour Composites 
Based on NIR/RE/Green bands 

Reed on Water vs. Mown & Other 
Vegetation 

1.46040 1.31715 

Flowering Goldenrod vs. Mown & Other 
Vegetation 

1.60247 0.25575 

Vegetative Goldenrod vs. Mown & Other 
Vegetation 

1.71213 1.96521 

Vegetative Goldenrod vs. Reed on Land 1.77214 1.78316 

Reed on Water vs. Reed on Land 1.77287 1.51057 

Reed on Land vs. Mown & Other 
Vegetation 

1.83301 1.83144 

Vegetative Goldenrod vs. Reed on Water 1.99823 1.99355 

Vegetative Goldenrod vs. Flowering 
Goldenrod 

1.99884 1.97353 

Flowering Goldenrod vs. Reed on Water 1.99890 1.04508 

Flowering Goldenrod vs. Reed on Land 1.99999 1.64385 
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(a) 

   

(b)  (c) (d) 

   
(e) (f) (g) 

Fig. 1: (a) swissimage Level 3 (Geodata © swisstopo) with reference point on the Entensee 
Pond, (b) False Color Composite (FCC) of the Entensee Pond with 6.5 cm resolution 
acquired by a drone on August 17, 2020, (c) Red Green Blue (RGB) image of the 
Entensee Pond with 6.5 cm resolution acquired by a drone on August 17, 2020, (d) 
Digital Surface Model (DSM) of the Entensee Pond (colour ramp is meter above sea 
level), (e) Heavy goldenrod coverage in a wet meadow, (f) Mask created by using 
BCC index for isolating surface water, (g) Mask created by using DSM for isolating 
trees. 
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Before the classification, the ROIs were randomly separated into two groups as training and 
control. Training ROIs are used to classify the image and control ROIs are used to calculate 
the accuracy tables. 

Classification of the Entensee Pond was performed based on a maximum likelihood algo-
rithm, which runs a statistical analysis based on the covariances and means of the training 
data to assign probabilities to each pixel falling into a different class category (JONES & 
VAUGHAN 2010). 

The ROIs separability test showed that Flowering Goldenrod and Reed on Water classes were 
better separable on the RGB bands; therefore, those classes were first classified (Table 2). 
Subsequently, the rest of the classes were classified in FCC as they were better or almost as 
well separable as RGB in the combination of NIR, RE, and Green bands. Therefore, RGB 
bands were used to classify the Flowering Goldenrod and Reed on Water, and FCC bands to 
classify Reed on Land, Vegetative Goldenrod, and Mown & Other Vegetation classes.  

To validate the results of the classification, the Kappa coefficient, producer accuracies, and 
user accuracies were calculated and a confusion matrix was created by using the control 
ROIs. 

3 Results 

The dimensions of the area analysed were 331.7 x 398.4 m corresponding to 132,149 m2. The 
areal coverage of Giant Goldenrod was determined to be 13,677 m2 corresponding to 10.35% 
of the total area analysed according to classification run by a maximum likelihood algorithm 
(Table 3). Goldenrod cover was concentrated around the pond as well as the northern, and 
western portion of the area, which was similar to ground observations made by ProNatura 
(Figure 2). 

Table 3: Areal coverage of different classes in the Entensee Pond 

Class Percentage (%) Total Area (m2) 

Goldenrod 10.35% 13,677 

Reed 20.31% 26,839 

Surface Water 1.12% 1,480 

Trees 11.57% 15,289 

Mown & Other Vegetation 56.64% 74,849 

Unclassified 0.05% 66 

Producer’s accuracy was calculated by dividing accurately classified pixels in a class to the 
total number of pixels of reference, indicating how well the area is classified including error 
of omissions. User’s accuracy, on the other hand, shows how reliable the map is by dividing 
accurately classified pixels to the total number of pixels in that class, including error of com-
mission (BANKO 1998). For every class analysed, above 80% producer’s and user’s accuracy 
were achieved in the classification of the Entensee Pond (Table 4). 
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Fig. 2: Final classification of Entensee Pond based on RGB and multispectral data 

The Kappa coefficient developed by COHEN (1960) shows how much of the error is reduced 
by the classification algorithm if the classification was performed randomly (JENSEN 1996). 
We achieved a Kappa coefficient of 0.902 indicating the classification process avoids 90% 
of the errors that a random classification generates. Overall accuracy of the classification was 
92.12% (Table 4). 
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Table 4: Accuracy table of the classification of the Entensee Pond, including producer, 
user, overall accuracies, and Kappa coefficient 

 Control Data User  
Accuracies 

C
la

ss
ifi

ed
 D

at
a 

Class Vegeta-
tive 
Golden-
rod 

Flower-
ing Gold-
enrod 

Mown & 
Other 
Veg. 

Reed on 
Water 

Reed on 
Land 

Total 

Vegeta-
tive 
Golden-
rod 

94 0 0 0 2 96 94/96 
97.92% 

Flower-
ing Gold-
enrod 

0 95 0 0 0 95 95/95 
100% 

Mown & 
Other 
Veg. 

0 4 91 8 8 111 91/111 
81.98% 

Reed on 
Water 0 0 8 89 2 99 89/99 

89.90% 

Reed on 
Land 5 0 0 2 87 94 87/94 

92.55% 

Total 99 99 99 99 99 495  

Producer 
Accuracies 

94/99 
94.95% 

95/99 
95.96% 

91/99 
91.92% 

89/99 
89.90% 

87/99 
87.88% 

  

Overall Accuracy: (456/495) 92.12% 

Kappa Coefficient: 0.902 

4 Discussion 

Our results demonstrate that remote sensing techniques with UAV are a powerful tool for 
monitoring and combatting invasive alien plant species by rapidly providing high accuracy 
maps with high resolution. Multispectral sensors beyond the 700 nm spectrum offer alterna-
tives to differentiate structures with similar spectral characteristics in the RGB bands. In this 
study, Red Edge and Near Infrared bands were exploited to classify vegetative goldenrod 
(Solidago altissima) from reed (Phragmites australis) on land and mown & other vegetation 
classes which had similar spectral characteristics in the RGB bands. 

Phenological phase and plant-community composition are important factors to differentiate 
the Giant Goldenrod from the other plant species in the community. Therefore, the peak 
flowering period of Giant Goldenrod was chosen to acquire the images. The methodology 
developed in this study might have been different, if the drone images were acquired at a 
different time of the year than peak flowering season of our target species. The absence of 
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other bright yellow flowering plants in the plant community might have increased the accu-
racy of this study.  

The Maximum Likelihood algorithm led to very high classification results in this study; how-
ever, the use of other machine learning algorithms such as random forest and minimum dis-
tance or convolutional neural networks are alternatives that might result in even higher clas-
sification results. It has been demonstrated that convolutional neural networks are extremely 
efficient to identify invasive species in the wild with very high accuracy (LEE et al. 2016, 
KATTENBORN et al. 2019, QIAN et al. 2020, QIAO et al. 2020). Convolutional neural networks 
might also be utilized to develop a methodology for upscaling the identification results to 
larger spatial extents.  

Mapping Giant Goldenrod was the first step of a long-term monitoring study, which will 
extend to multi-year analysis with the aim of creating change-detection maps to quantify how 
the Giant Goldenrod stand responds to current available control techniques. Change detection 
maps will be critical to assess opportunistic growth patterns of the Giant Goldenrod to de-
velop novel techniques to control its expansion.   
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