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Abstract: Urban expansion can worsen climate change conditions and enlarge hazard zones. Sea level 
rise due to climate change makes coastal populations more susceptible to flood risks. The use of land 
change prediction modelling to inform scenario-based planning has been shown to help increase capa-
bilities when dealing with uncertainties in urbanization such as urban growth and flood risk, when 
compared to singular comprehensive plans. This research uses the Land Transformation model to pre-
dict three different urban growth scenarios for Tampa, FL to determine how effective the current com-
prehensive plan is in adapting urban growth to decreasing flood risk and pollutant load. To achieve this, 
the research develops master plans according to each scenario then assesses their probable impact using 
the Long-Term Hydrologic Impact Analysis Low Impact Development Spreadsheet as a performance 
model. Findings show that the current future land use plan for Tampa, while it appears to be better than 
current patterns of development, has higher flood exposure, stormwater runoff, and pollutant discharge 
that current conditions but more than a purely resilient approach to future growth. 
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1 Introduction 

Globally, more than 600 million people live in coastal regions lower than 10 meters above 
sea level, and almost 2.4 billion people live within 100 km of a coastline (UNITED NATIONS 
2017). In the U.S., 254 counties (8%) out of 3,142 are located on the coast. 39% (123.3 
million people) of the total population live in coastal counties, and 52% (163.8 million peo-
ple) live in coastal watershed counties (WILSON & FISCHETTI 2010). Shoreline county popu-
lations have grown steadily since 1970 and are projected to continue to grow (CROSSETT et 
al. 2013). Sea level rise due to climate change makes coastal populations more susceptible to 
flood risks. Urban expansion due to population growth can worsen climate change conditions 
and enlarge hazard zones. As urban population accrue, impervious surfaces increase, result-
ing in increases in stormwater runoff and urban heat reflection. Both urban heart, stormwater 
runoff, and flood event frequency are increasing due to climate change. When open space 
land uses are converted to urban land uses, flood risk can increase due to increases in flood-
plain area and impervious surfaces. The capability to accurately predict both future floodplain 
changes and future urban growth allows for the capacity to better prepare coastal communi-
ties for the effects of future climate change and helps support urban planning for better po-
tential future flood risk mitigation. 

Tampa, Florida, USA, is ranked in the top five of U.S. cities most vulnerable to flooding and 
is expected to grow by over 100,000 people by 2040 (CLIMATE CENTRAL 2012). Flood risks 
are expected to worsen due to the effects of climate change and anticipated sea level rise. 
Scenario planning has been shown to be a more effective approach to prepare for unknown 
futures than singular comprehensive plans (WOODRUFF 2016). Spatial relationships involv-
ing the process of urbanization and flood risk are still not fully integrated with scenario plan- 
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ning-based studies (BATTY 2008). Programs such as Geographic Information Systems (GIS) 
have developed software to help predict future flood plains and urban conditions.  

The use of innovative digital tools with GIS to help analyse, predict for, and design geo-
graphic space has been referred to as Geodesign. WILSON (2014) suggests that Geodesign 
processes can be used for a visioning purposes and/or representing futures-to-come, on mul-
tiple scales. STENINITZ (2012) references Geodesign’s ability to integrate fields of research 
and describes it as a set of concepts and methods derived from geography and spatial sciences 
which seeks to create a symbiotic collaboration between both geographic sciences and design 
based professions. In this research, Geodesign is refers to a method of applying systems 
thinking in an effort to provide a framework which provides alternatives to geographic con-
texts which can then be altered through new design strategies/programs (GOODCHILD 2012). 

In this research, a series of tools are used on multi-scalar spatial datasets with a purpose of 
increasing resiliency in a flood prone neighborhood. The Land Transformation Model (LTM), 
a GIS-based neural network for Land Change Modelling (LCM), is used to predict potential 
future urban growth of Tampa according to three different scenarios: 1) Business as usual – 
predicted urban growth based on current growth patterns; 2) Growth as planned – predicted 
urban growth based on the current land use plan; and 3) Resilient growth – predicted urban 
growth based on all future development occurring outside of the floodplain. 

This research asks, how effective is the current comprehensive plan in adapting urban growth 
to decreasing flood risk and pollutant load? The site under investigation is a coastal neigh-
borhood on the east Tampa, FL, and one of the most socially and physically vulnerable neigh-
borhoods. It is both heavily effected by flooding and characterized by industrial land uses, 
brown fields, and sites listed by the US Environmental Protection Agency’s Toxic Release 
Inventory (TRI). TRI sites are those that can cause cancer or other chronic human health 
effects, significant adverse acute human health effects, and/or significant adverse environ-
mental effects. The site’s numerous sources of pollution are resulting in severe contamination 
and related effects from runoff containing industrial by-products. To answer the research 
question, three different urban design master plans are developed based on each scenario’s 
prediction outputs. Then, resilience analytics and landscape performance models are ran on 
each design scenario to project impact. Resilience performance quantifies the effectiveness with 
which a neighbourhood’s existing conditions impact flood risk levels or designed/planned 
solutions fulfil their intended purpose to reduce flood risk (NEWMAN et al. 2019). To conduct 
the design impact analysis, the Long-Term Hydrologic Impact Assessment (L-THIA) Low 
Impact Development Spreadsheet was applied to each scenario’s master plan to gauge the 
performance of each plan in decreasing runoff and industrial pollution. The L-THIA esti-
mates long-term average annual runoff (e. g. volume, depth), and nonpoint source pollution 
resulting from future land changes. By developing and operationalizing measures to evaluate 
the performance of the built environment, baseline data is used to compare new urban growth 
schemes against to determine design/plan benefits. 

2 Literature Review 

2.1 Flood Resilience 

Floods are the costliest natural hazard globally. Flood vulnerability is compounded by land 
use conversion and increased impervious surfaces, amplifying the harmful social and eco- 
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nomic impacts of recent and future floods. Given the far-reaching impacts of recent major 
US storms, such as Hurricanes Katrina (2008), Ike (2005), Sandy (2012), and Harvey (2017), 
it is clear that the increased frequency and damage costs of flooding is not an issue solved 
through only engineering. The way humans settle and build upon the physical landscape is a 
major factor contributing to flood risk. Since flood disasters are a human-induced phenome-
non, changing the way we shape communities through their development patterns may be the 
most effective way to mitigate repetitive and costly flood events. Urbanization and the pro-
liferation of impervious surfaces across watershed units have long been considered a major 
contributor to adverse impacts associated with flood events (BERKE et al. 2015). Conversion 
of natural landscapes to urban or suburban developments can reduce the functionality of hy-
drological systems leading to reduced soil infiltration and increased surface runoff and peak 
discharge in nearby streams (BHADURI et al. 2000). In an observational study of 37 coastal 
counties in Texas, BRODY et al. (2008) found that each square meter of impervious surface 
added to the landscape translated into approximately $3,602 of added property damage 
caused by floods per year from 1997-2001. More recent research indicates that flood impacts 
are driven not solely by the amount of impervious surface, but by its pattern and intensity 
across a given landscape. The specific form of the built environment is an important contrib-
utor to flood losses. BRODY et al. (2012) found that the intensity of development within coun-
ties/parishes along the Gulf of Mexico coast significantly impacted the amount of reported 
property damage from floods. Jurisdictions with large amounts of high-intensity development 
patterns experienced, on average, lower amounts of property damage from floods. Socioec-
onomic characteristics and household composition can also be significant factors predicting 
the likelihood and extent of flood disasters (CUTTER et al. 2003). 

2.2 Land Change Modelling (LCM) and Scenario Planning 

LCM is a planning support system which applies future land predictions to land use planning 
processes (BERKE & KAISER 2006). Over the past few decades, LCM has been developed 
significantly, addressing urbanization issues and their related impacts in many fields (VER-

BURG et al. 2015). The use of LCM has created the opportunity to mold uncertain futures into 
more determined conditions via scenario planning. LCM has been increasingly used in flood 
resilience and climate change research and is an effective tool to evaluate future urban growth 
scenarios (BROWN et al. 2013). Scenario planning is strategic planning which links technol-
ogies into the management of uncertain futures through the creation of alternative forms of 
growth (RINGLAND & SCHWARTZ 1998). In urban planning, scenarios have been widely uti-
lized for land use, transportation, economic development, environmental systems, and resil-
ience (GOODSPEED 2017). Many LCM studies have forecasted urban growth scenarios and 
projected their impacts to identify optimal urban growth directions. Some have estimated 
climate change impacts on future urban growth, but such approaches are rare (SONG et al. 
2017) 

The LTM is a GIS-based tool used to predict land use to examine relationships between spa-
tial driving factors and land use changes (PIJANOWSKI et al. 1997). The LTM has a similar 
process to other regression-based prediction tools, however, it uses machine learning to cal-
culate complex patterns (PIJANOWSKI et al. 2002). Compared to other prediction models (e. g. 
logistic regression, SLEUTH, CLUE, etc.), the LTM has reported relatively higher prediction 
accuracies (LIN et al. 2011, PONTIUS et al. 2008). The LTM is an Artificial Neural Network 
(ANN) prediction model. ANNs recognize and classify complex behaviours and patterns (PI- 
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JANOWSKI et al. 2002) and have been popularly utilized for complicated and practical tasks 
in many fields including medicine, business, climatology, ecology, and geography. PIJA-
NOWSKI et al. (1997) first introduced the LTM to simulate land cover change. The model has 
been applied in different locations and scales for forecasting urbanization, vacancy, defor-
estation (MAS et al. 2004, MÜLLER & MBURU 2009), and loss of agriculture (LI et al. 2012). 
It has been applied in places such as Amsterdam, the Netherlands, Houston, TX, (KIM & 

NEWMAN 2019), Chicago, IL (LEE & NEWMAN 2017), Fort Worth, TX (NEWMAN et al. 2016), 
Beijing-Tianjin-Tangshan, China (KUANG 2011), and Tehran, Iran (PIJANOWSKI et al. 2009; 
PIJANOWSKI et al. 2014). Though it is considered highly accurate, the LTM’s prediction pro-
cess is time-consuming and its internal analytic structure and variable relationships can be 
difficult to interpret (BROWN et al. 2013).  

3 Methods 

The LTM synthesizes input drivers (factors contributing urban growth mapped as raster data) 
and input patterns (historic land cover raster images also mapped as raster data) by analysing 
the change between input patterns and linking the drivers of urbanization to this change (Fig. 
1). Up to 250,000 training cycles are then ran to determine the best model fit. Using 15 proven 
input drivers (nine proximity variables including distance to waterfront, rivers, open space, 
highway, residence, commercial, central business district, existing urban areas, and public 
schools, and six density variables including slope, population density, population increase, 
employee numbers, poverty, and land value) contributing to urban growth, the LTM was used 
to predict urban growth by 2040 for the business and usual, growth as planned, and resilient 
growth scenarios. Three exclusionary layers were across each urban growth scenario. Exclu-
sionary layers prohibit predicted growth in specific areas based on selected criteria and pre-
dicted future urban growth is only allowed outside of any exclusionary layer. The U.S. Geo-
logical Survey provided historic land cover data in raster images (30 × 30 m pixels). Hills-
borough County provides the Tampa Comprehensive Plan 2040 with future land use data. To 
delineate future flood risk zones, the 100-year floodplain map from the Flood Insurance Rate 
Map (FEMA 2018) and future sea-level rise projection data from NOAA (USACE 2017) 
were used. 

 

Fig. 1: LTM process for predicting urban growth 

The four most common types of spatial statistical measures were used to validate predictions 
and calibrate the model to test its accuracy: percent correct metric (PCM), kappa coefficient, 
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quantity disagreement & allocation disagreement, and area under curve (AUC) of receiver 
operating characteristic (ROC) (NEWMAN et al. 2016). All calibration outputs showed the 
model as acceptable or better according to the standards used in the literature (PONTIUS et al. 
2008), with a 52.19 PCM reading, a 0.48 Kappa statistic, a 92.85 % for OA, and 0.74 in the 
AUC output. Urban growth predictions by 2040 per scenario were analysed according to the 
flood plain with sea level rise as dictated by the NOAA intermediate-high projection. Mas-
terplans based on each scenario’s predicted urban growth were then developed and different 
land use schemes were utilized to achieve each growth projection.  

The Long-Term Hydrologic Impact Analysis (L-THIA) Low Impact Development Spread-
sheet was used as a performance tool to measure impacts across each predicted/design sce-
nario. The L-THIA is an urban growth analysis tool that is applied to estimate long-term 
runoff and nonpoint source pollution impacts of different land use development scenarios. It 
generates estimates of 14 types of non-point sources pollution loadings to waterbodies based 
on land use changes. The model has been used to track land-use change in watersheds for 
historical land-use scenarios (TANG et al. 2005), identify non-point source pollution areas and 
evaluate land use development for pollution management (BHADURI et al. 2000). 

4 Results 

4.1 LTM Output 

Flood exposure calculations compare existing urban area with predicted future urban area 
through urban growth scenarios at city and neighbourhood levels. Urban flood exposure is 
calculated by overlapping existing urban and projected future urban scenarios with the delin-
eated future flood risk zones. The current 100-year floodplain covers 90.9 km2, or 30 % of 
Tampa’s area. Following the previous land change ratio, there was a change of 8,917 pixels 
between 2001 and 2011 indicating a change of 32,600 people. The future urban growth sce-
narios project a change of 48,395 pixels corresponding to a 176,928 population change be-
tween 2001 and 2040. The forecasted pixel numbers are the same for all scenarios, but the 
locations of the pixels are different based on different exclusionary layers in each scenario. 
Business as usual excludes existing urban areas, rivers and lakes, highways, airports, and 
parks from future development areas; growth as planned also excludes environmentally sen-
sitive areas from the future land use (according to the comprehensive plan’s policy); and 
resilient growth also excludes development within future flood risk zones (2040 SLR High 
and 100-year floodplain). 

The result of urban flood exposure at the city level, shows that a large amount of current 
urban area (more than 20 %) is under the current 100-year floodplain. Future predicted urban 
development projects 30 % development of in the business and usual and 22 % in the growth 
as planned scenario within the current flood zone. NOAA’s projection shows that the sea-
level rise by 2040 in the study site varies from 0.18 m (low) to 0.62 m (extreme). Considering 
an intermediate-high sea level rise, 35 % of the predicted urban growth in the business as 
usual, 28 % in growth as planned, and 0 % in the resilient growth scenario would be within 
the 100-year flood plain (See Fig. 2). At the neighbourhood scale, within the design site, 
nearly 90% of the new growth would be in the floodplain, 83 % with the currently planned 
growth and only 5% in the resilient growth scenario (See Fig. 3). 
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Fig. 2: Urban growth predictions and flood risk at the Tampa scale 

 

Fig. 3: Urban growth predictions and flood risk at the site scale 

4.2 Neighbourhood Masterplans 

The designs within the neighbourhood used the relative locations and amounts of the predic-
tion outputs to inform development locations and land use arrangement. The transportation 
hierarchy remained the same across all design sites but densities and land use arrangements 
had to alter since the location of new development was restricted in certain areas in the growth 
as planned and resilient growth scenarios. Figure 4 shows the differences in land use percent-
ages per scenario while Figure 5 show the master plan layouts. 
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Fig. 4: Land use breakdowns per design scenario 

4.3 Design Impacts 

The performance model outputs for the current conditions suggest that the business as usual 
scenario increases impervious surfaces, decreases green infrastructure area, increases area 
within high flood risk, and increases public exposure to contaminants/pollutants in surface 
runoff, compared to the other two scenarios. The L-THIA model outputs show an average of 
around 70 acre-feet of stromwater runoff decrease per scenario, with business as usual having 
the most runoff and resident growth having the least (Fig. 6). A similar trend is found when 
examining average runoff depth, with resilient growth decreasing the amount nearly by half 
when compared to business as usual. Compared to the current situation only resilient growth 
reduces runoff depth and volume, with all other scenarios increasing the rate. All 14 pollu-
tants decrease significantly in the resilient growth scenario, compared to other scenarios. This 
reduction is nearly 30 % lower than the current situation. While growth as planned reduced 
pollutants compared to business as usual, both scenarios increase pollutant load in runoff 
compared to the current land use arrangement. While the resilient growth scenario appears to 
be a more optimal approach, construction/maintenance costs for low impact facilities and the 
increased densities to achieve the desired land use regulations can increase upfront costs. 
These costs are, however, lessened over time due to indirect benefits such as increased 
groundwater, increased carbon sequestration, decreased runoff, and decreased energy costs. 
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Fig. 5: Master plan for business as usual, planned growth, and resilient growth scenarios 
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Fig. 6: L-THIA outputs by scenario 

5 Conclusions 

This research asks, how effective is the current comprehensive plan in adapting urban growth 
to decreasing flood risk and pollutant load? It examined future urbanization using prediction 
modelling coupled with scenario planning to advance conditions for uncertain future climate 
change. The research used the city of Tampa, FL as an example to demonstrate a scenario 
matrix using urban growth and flood risk with SLR scenarios and impact analysis with sce-
nario evaluation. Our findings show that the current future land use plan for Tampa may not 
be the best approach for dealing with climate change, in terms of urban flood exposure, 
stormwater runoff increase, and pollutant discharge. In the city scaled comparison of urban 
flood exposure, the future urban area according to the current plan would have fewer im-
pacted urban areas by all future risk scenarios than the growth without development regula-
tions, but much more urban flood exposure than the scenario with strong floodplain regula-
tions. Moreover, at the neighbourhood level, the amount of runoff and pollutant load in the 
design site exposed to flood risk in planned growth is larger than in resident growth and 
higher than the current status. Thus, the current land use plan may be not well-prepared 
enough to achieve resilient communities, when compared to other urban growth simulations. 
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