
337 Full Paper

Journal of Digital Landscape Architecture, 1-2016, pp. 337-345. © Wichmann Verlag, VDE VERLAG GMBH ·
Berlin · Offenbach. ISBN 978-3-87907-612-3, ISSN 2367-4253, e-ISSN 2511-624X, doi:10.14627/537612038.
This article is an open access article distributed under the terms and conditions of the Creative Commons
Attribution license (http://creativecommons.org/licenses/by-nd/4.0/).

Coding Landscape: Teaching Computer
Programming to Landscape Architects

Caroline Westort1

1Iowa State University, Iowa/USA · cwestort@iastate.edu

Abstract: How to best teach coding to landscape architects? Domain-specific approaches to teaching
computer programming are surprisingly rare. Most computer programming curricula teach skills in a
generic way, to be broadly relevant to many people. A rapidly increasing number and ways of teaching
how to code to a range of skill levels is now available online, usually for free (see Appendix, RICHTEL

2015, GASCA 2014, FRAMPTON 2015, SIMS et al. 2011). Yet in landscape architecture coding is often
regarded as too difficult, too resource-intensive, insufficiently relevant to practice, or otherwise periph-
eral to the core mission of the profession to teach (WESTORT et al. 2013) . As a result, fundamentals of
coding logic remain largely un-taught in accredited core curricula in the U.S. This paper has three
objectives:

1. Offer a landscape architecture-specific approach to teaching introductory computer programming
that combines a) landscape parametrics with b) concepts of computer programming logic and c)
basic computer graphics.

2. Present a sequence of exercises intended to impart fundamental skills and peak student interest.
3. Showcase student project results that use the approach.

A sequence of short programming exercises asks students to define the geometry of elements from the
landscape palette – vegetation, landform, water, weather, lighting – and then to modify them using
increasingly more advanced and complex coding principles in a modular fashion. The following criteria
for successful landscape design software is offered to students as a guide to structuring their software:

 Graphically display landscape geometry, such that it is
 Interactively editable/modifiable/deformable and
 Analysable with accuracy and some precision
 Quickly, while being
 Easy to learn

Keywords: Landscape parametrics, computer programming, coding, design computing, landscape
palette, teaching, Geodesign

1 Introduction

Teaching computer programming to landscape architects is not new. Required in the core
curriculum at Harvard University’s Graduate School of Design from 1991-1993, MITCHELL

et. al. 1991 offered computer programming using a “top-down” approach with Pascal. It re-
mains the only case of a required course for coding in a landscape architecture curriculum
this author is aware of. Computing in undergraduate landscape architecture programs usually
consists of instruction in off-the shelf software, often following a 2D, 3D, 4D model, or a
generative, analytical, visualization, narrative structure (CANTRELL 2013). Moreover, the na-
ture of coding and software tool-making has evolved significantly in recent decades. Off the
shelf software is used and sometimes customized with code with languages like Python for
Arc Info, AutoLISP for AutoCAD, often pushed to its algorithmic or performance limits with
the large datasets and scales typically called for in a landscape architecture design project.

338 Journal of Digital Landscape Architecture · 1-2016

“High level” coding is now possible for the previously uninitiated via use of application
programming interfaces (APIs), scripts, macros, and other “click and drag” integrated pro-
gramming environments (IDEs). Also known as visual content creation tools, Scratch, Pro-
cessing, DWNLD and Telerik are among the most popular with large user bases, and many
landscape designers and geospatial thinkers are active using them.

This author’s assertion that it is important for landscape architects to know the fundamentals
of computer programming stems from two convictions:

1) Current software available for landscape design rarely fulfills the criteria for effective
landscape design software, so more landscape architects need to be involved in developing
software tools.

2) Digital representation of our landscape palette needs more algorithmic attention. Curved
surfaces, fuzzy edges, large scales characterize our palette, and remain limited, unwieldy and
largely divorced from analytical functionality in design software used in design studio.

Landscape architecture may be regarded as an Information Technology (IT) profession, and
in the U.S. has ambition to be formally recognized as a Science Technology Engineering and
Mathematics (STEM) discipline (ASLA 2013, LARCH 2013). Several notable contributors
to landscape architecture, IT and Geographic Information Systems (GIS) in particular have
made their contributions in part from knowledge of computer programming, e. g. Dana Tom-
lin, Jack Dangermond (CRISMAN 2006, TOMLIN 1994, 2013, 1990) exemplifying how the
discipline benefits from coding literacy.

Two recent phenomena also highlight the opportunity for heightened understanding of com-
puter programming among landscape architects:

(1) Google Earth was launched in 2008 which has quickly raised geospatial literacy and ex-
pectations among an increasingly tech-savvy global public. Together with Google Maps an
opportunity for landscape architects to customize the application of geospatial concepts to a
broader potential customer base is apparent, and coding knowledge could leverage this op-
portunity.

(2) The Hour of Code phenomenon, where 46 million-and-counting people started to learn
how to code online at codeacademy.org the first year, and millions more in subsequent years.
Hour of Code is broad acknowledgement that coding, and the associated computational
thinking it calls for are essential skills for the 21st Century (RICHTEL 2014, FOLEY 2013,
MCDONALD 2013, PARTOVI et al. 2014).

The two phenomena considered together represent powerful converging forces for how con-
trol over one’s digital environments and tools is becoming a universal human priority. Coders
with design training or experience are recognized across industries as uniquely valuable in
sectors where creative thinking coupled with application knowledge is a particularly potent
combination (WIDDICOMBE 2014, WATKINS, 2014, TO 2014).

2 Approach

The approach to teaching introductory computer programming to landscape architects of-
fered here is based on combining three topics:

C. Westort: Coding Landscape 339

1. Introductory coding logic – Elementary concepts of computer programming that are pre-
sent in the majority of computer programming languages. The list is derived from a sur-
vey of content offered in online coding courses listed in the Appendix, and the syllabus
of an introduction to computer science course offered at the Massachusetts Institute of
Technology (GRIMSON).

2. Basics of computer graphics – Euclidean geometry, interactivity, color. These concepts
represent a subset of concepts introduced in

3. Landscape parametrics – Algorithmic description of the geometry of the landscape pal-
ette consisting of vegetation, terrain, water, weather and lighting effects.

Fig. 1: Matrix Summary list of the approach topic elements, landscape parametrics, com-
puter graphics and coding logic

The proposed approach combines “generic” computer programming logic, shown in blue in
Figure 1, with two essential core areas of landscape computing: Landscape parametrics,
shown in green, computer graphics, yellow. Landscape Parametrics is the piece that custom-
izes the approach to our domain (Figure 2). The combination of these three topics with the
criteria for effective landscape design software structure the individual coding exercises.

2.1 Criteria for Effective Landscape Design Software

For coding to feel relevant and useful to landscape architects, it should fulfill the following
criteria for successful design software:

1. Display a 3D representation
2. Edit/Modify/Deform/Change the representation
3. Analyze the representation quantitatively
4. Do so quickly, in close to real time
5. Such that it is easy to learn (for the non ‘expert user’)

For more discussion on these criteria see WESTORT 2015 and ERVIN et al. 1995.

340 Journal of Digital Landscape Architecture · 1-2016

These criteria contribute to the selection of the coding tools and environment. The open
source programming language and IDE Processing was selected for this course. One of the
stated aims of Processing is to act as a tool to get non-programmers started with program-
ming, through the instant gratification of visual feedback. Its focus on the electronic arts,
new media art, and visual design communities with the purpose of teaching the fundamentals
of computer programming in a visual context with visual feedback. The “sketch” as a version
of “drafts”, or easily changed versions of alternatives, makes it consistent with the above
criteria for landscape design software, and highly suited to serve as the platform for the class.
The language builds on the Java language, but uses a simplified syntax and graphics pro-
gramming model (WIKIPEDIA PROGRAMMING LANGUAGE).

Figure 2 diagrams how Processing provides the tools for basic coding and computer graphics
content, and the exercises and domain knowledge are engaged in the Landscape Parametric
module. Processing plus landscape parametrics are combined to fulfil the criteria for effec-
tive landscape design software in the assignment sequence.

Fig. 2:
Summary of approach
topic elements that
combines Landscape
Parametrics, Computer
Graphics and Coding
Logic

2.2 Exercises

A sequence of short programming exercises asks students to define the geometry of elements
from the landscape palette – vegetation, landform, water, weather, lighting (ERVIN, 2001) –
and then to modify these geometries in a modular fashion using increasingly more advanced
and complex coding principles.

Three primary priorities structure the sequence of exercises:

1. Each exercise shows graphics on the screen.
2. Initial coding exercise represent the geometric parameters of an initial subset of param-

eterized landscape “primitive” forms:
a. tree
b. water droplet
c. landform field/grid

C. Westort: Coding Landscape 341

Figure 3 shows the graphic output of the first 3 coding exercises.

Fig. 3: Graphics from first 3 Coding Assignments, representing landscape primitives: tree,
landform, water droplet

3. Each landscape primitive form is coded in at least 2 different ways, with the graphics on
the screen remaining constant. This is to show how the digital design medium involves
at least 2 representations: external and internal. External representations are the display
– or what is visible on the screen – and internal representations are the algorithms and
data structures written in code or on disk that describe the graphics that are visible.

To illustrate how this works, we follow the exercise sequence for landform:

First, students are asked to program a 2-dimensional horizontal line to represent a simple
section profile. Students are shown how to manipulate the position on the screen of its end
points, the line’s color, stroke thickness using the pre-programmed Processing function
line(). Students are then asked to draw multiple horizontal lines, offset from one another as
parallel lines. Students are asked to do the same for vertical lines, then to super-impose these
lines onto the horizontal lines. Next students draw a box around all lines, to resemble a land-
form ‘field’ shown above.

Students are then asked to code the same grid using a looping structure. The graphic output
is the same yet the algorithm is more complicated than the previous ‘hard-coded’ line by line
solution. Students are asked to re-write their grid code such that there is a drawGrid() func-
tion that contains all grid-related calls.

Finally students are asked to re-draw their grid from vertex to vertex. Again the graphics
looks identical to prior grid outputs to the screen. So far the grids have all been 2D. At this
stage students are asked to add a z-coordinate to each vertex, making them three-dimensional
points. Interactive computer graphics techniques are then introduced from the Processing
IDE’s library of pre-programmed functions for displaying the grid in axonometric view and
add graphical user input functionality. Students are then asked to interactively manipulate
single vertices, see Figure 4.

Fig. 4:
Student coding assignment showcasing fulfilment of
criteria for effective landscape architecture design
software through editable 3D vertex coordinates that
are interactively editable

342 Journal of Digital Landscape Architecture · 1-2016

Final Project ‒ Synthesis

The second half of the semester asks students to develop their own user-defined final project.
The project objective is to implement a software programming project that synthesizes prior
programming concepts and features GRAPHIC, INTERACIVE, and ANALYSIS elements:

GRAPHIC: What do you need to see? Defines and displays the geometry of at least 1 of the
following landscape elements, landform, water, vegetation, weather effects, including light-
ing, and

INTERACTIVE: How do you want the user to interact with the landscape element? Allow
direct interactivity of a set of geometric operations upon your selection.

ANALYSIS: What useful/interesting/novel calculation can be accurately performed on your
landscape element?

Each student video records a demonstration of results publicly, online and for juried re-
view. Example graphics from these projects are shown below:

Fig. 5: Example graphics representing individual landscape palette elements from student
generated code, final project assignment. Top row to bottom row: Landform, water,
vegetation, lighting.

C. Westort: Coding Landscape 343

3 Discussion

Feedback the author has received on this approach follow one of two general themes:

1) The landscape palette definition is too narrow or confining.
The geometry assigned in the assignments is too simplistic.
The idea that discrete Euclidean geometric forms, e. g. circles, squares, cones, etc. don’t
and can’t capture the richness and complexity of our landscape environment was of con-
cern to the author. Initial offerings of the course has brought encouraging results. Stu-
dents seem able to quickly and easily scale-up the simpler building blocks to realize their
much more complicated intentions. It appears the simple act of “calling a circle a drop
of water and coloring it blue”, is enough to capture and sustain the interest and attention
of students long enough to impart coding skills and confidence. That said, the exercise
sequence could certainly be refined, and the topic elements listed in the Summary Matrix
‘bundled’ more comprehensively and elegantly in the exercise sequence.

2) Landscape architects don’t need to know how to code.
Landscape architecture is not and never will be a STEM discipline.
Coding will be obsolete in the future anyway (for a take on this see NICHOLS 2015). This
theme is broader and requires a more lengthy discussion than the space available here.
In short, however, this author believes an approach to teaching coding from a domain-
specific vantage point could catalyze both the acceptance of computer programming as
relevant, useful and powerful to our discipline, and the willingness to learn how to do it.

4 Conclusion and Outlook

Offered in this paper is an approach and example results for teaching computer programming
in a domain-specific way. The objective is to make the topic relevant and interesting to stu-
dents of landscape architecture, in order to inspire them to pursue information technology
beyond end-use of software. The approach uses landscape parametrics as the basis for teach-
ing this content in a sequence of exercises that follows a progression of complexity for indi-
vidual landscape palette elements, landform, vegetation, water, weather, lighting, and sys-
tems. These encoded parametric descriptions can be both applied to a wide range of project
types, and scaled up to increasingly more complex functionality.

The idea that landscape architects could as part of their design process invent “internal” rep-
resentations of their design intentions in the form of code that can be manipulated, analysed
and virtually experienced on a computer screen or a head-mounted display is an exciting
prospect that belongs squarely in our discipline. There is a technological imperative to equip
emerging generations of landscape architects with the skills to participate in these kinds of
opportunities and others yet to be imagined. An accessible, domain-specific approach that
folds in the landscape palette with a targeted set of coding principles and computer graphics
functionality strikes this author as a worthwhile, interesting, and hopefully useful.

344 Journal of Digital Landscape Architecture · 1-2016

Appendix

ARDUINO. http://www.arduino.cc/
CODE ACADEMY “Hour of Code”, Ed. Code Academy. https://www.codecademy.com/
CODE SCHOOL. https://http://www.codeschool.com/
CODE. http://code.org/
CODESPELLS. http://codespells.org/
CODINGBAT. http://codingbat.com/
COURSERA. https://http://www.coursera.org/
CYCLING ’74 MAX. https://cycling74.com/
EDX. https://http://www.edx.org/
HTML DOG. http://htmldog.com/
KHAN ACADEMY. https://http://www.khanacademy.org/
KUATO STUDIOS. http://www.kuatostudios.com/games/hakitzu-elite/
LCODETHW. http://learncodethehardway.org/
LYNDA “lynda.com”. https://www.lynda.com/
MADE WITH CODE. https://http://www.madewithcode.com/
OF. http://openframeworks.cc/
RUBYMONK. https://rubymonk.com/
SCRATCH. http://scratch.mit.edu/
TREEHOUSE. http://teamtreehouse.com/
TRY PYTHON. http://www.trypython.org/
UDACITY. https://http://www.udacity.com/

References

A.S.L.A. COUNCIL OF EDUCATORS IN LANDSCAPE ARCHITECTURE (2013), Council on Edu-
cation, ASLA Committee on Education STEM Initiative, Stephanie Rolley, Chair,
July 2, 2013.

BROWN LEE, J. (2015), http://www.fastcodesign.com/3043624/25-ideas-shaping-the-future-
of-design “The Rise Of The Self-Educated Designer”.

CANTRELL B. (2013), Course description: http://lab.visual-logic.com/academia/la-7103-
media-iii/.

CHRISMAN, N. (2006), Charting the unknown: How computer mapping at Harvard became
GIS. Esri Press.

ERVIN, S. M. & WESTORT, C. Y. (1995), Procedural Terrain; A Virtual Bulldozer. In: Pro-
ceedings CAAD-Futures, International Conference on Computer Aided Architectural
Design, Singapore, 1995.

ERVIN, S. M. (2001), Landscape Modeling: Digital Techniques for Landscape Visualization.
ERVIN, S. M. & HASBROUCK, H. (Eds.). McGraw-Hill, New York,

FRAMPTON, J. (2015), 12 Sites That Will Teach You Coding for Free, Sept 8, 2015.
http://www.entrepreneur.com/article/250323 (Sept 14, 2015).

GASCA, P. (2014), Teach Yourself Coding on Your Own Time with These Resources. Enter-
preneur Magazine, August 18, 2014. http://www.entrepreneur.com/article/236511 (Oc-
tober 13, 2015).

C. Westort: Coding Landscape 345

GRIMSON, E. & GUTTAG, J. (2012), MIT 6.00 MIT OPEN COURSEWARE, MIT.
http://www.youtube.com/watch?v=k6U-i4gXkLM (Introduction to Computer Science &
Programming" Lecture 1: What is Computation?).

HADI PARTOVI, J. M. & HURST, V. (2014), Is Coding the Language of the Digital Age? In:
A. M. ALEXA LIM (Ed.), Science Friday.

LARCH (2013), Discussion about STEM initiative of ASLA, CELA. Ed. Landscape Archi-
tecture Electronic Forum LARCH-L@LISTSERV.SYR.EDU, May 7, 2013.

MITCHELL, W. J. & TAN, M. (1991), “Top Down Knowledge-Based Design” in Digital De-
sign Media; A Handbook for Architecture & Design Professionals. MITCHELL, W. J. &
MCCULLOUGH, M. (Eds.). Van Nostrand Reinhold, New York.

NICHOLS, S. (2015), Coding Academies Are Nonsense; CRUNCH Network.
http://techcrunch.com/2015/10/23/coding-academies-are-nonsense/.

RICHTEL, M. (2014), Reading, Writing, Arithmetic, and Lately, Coding.
http://www.nytimes.com/2014/05/11/us/reading-writing-arithmetic-and-lately-
coding.html? r=0

SIMS, Z. & BUBINKSI, C. (2011), “Codecademy”. http://www. codeacademy.com.
TO, M. (2014), Designers Code Differently.

https://medium.com/learning-xcode-as-a-designer/designers-code-differently-
e163a354d6cc.

TOMLIN, C. D. (1990), GIS and Cartographic Modelling, 1st Ed. Prentice Hall College Div.
TOMLIN, C. D. (1994), Map algebra: one perspective. Landscape and Urban Planning, 30,

3-12.
VAN DAM, A. & FOLEY, J. D. (1982), Fundamentals of Interactive Computer Graphics. Ad-

dison-Wesley.
WATKINS, C. (2014), Why Designers Really Should Learn to Code.

http://blog.capwatkins.com/why-designers-really-should-learn-to-code.
WESTORT, C. Y., ERVIN, S. M., PETSCHEK, P., CANTRELL, B., HOINKES, R. & DANAHY, J.

(2013), Compiling in the Core; Computer Programming in the Landscape Architecture
Curriculum; Apps, Scripting, Macros & Interaction. In: CELA Annual Meeting: Space.
Time/Place. Duration. The University of Texas at Austin, Austin, Texas USA, 2013,
p. 361.

WESTORT, C. Y. (2015), Designing DTMs for Automated Machine Guidance (AMG); A
Small Scale Case Study Look at Software Requirements (ICCEASI 2015). Proceedings
of the 3rd International Conference on Civil Engineering, Architecture, and Sustainable
Infrastructure, July 1-3, 2015, Hong Kong University of Science & Technology Hong
Kong.

WIDDICOMBE, L. (2014), The Programmer's Price; Want to hire a coding superstar? Call the
agent. The New Yorker, 54-64.

WIKIPEDIA, “Google Earth”.
WIKIPEDIA “Programming language”.

https://en.wikipedia.org/wiki/Processing_(programming_language).

