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Abstract 

Uncertainty is associated with GIS- Multi Criteria Decision Analysis (GIS-MCDA) when 
applied to disaster modeling. Technically speaking, GIS-MCDA model outcomes are prone 
to multiple types of uncertainty and error. In order to minimize the inherent uncertainty, 
within this research we introduced a novel approach of spatial explicit uncertainty and 
sensitivity analysis for GIS-MCDA models. This novel approach is developed based on 
early works published by FEZIZADEH et al. 2014a, 2014b and makes use the capability of 
Fuzzy-Analytical Hierarchical Process (FAHP), Monte Carlo Simulation (MCS) and Vari-
ance based Global Sensitivity Analysis (GSA). This approach was examined on forest fire 
susceptibility mapping. The methodology contains of three different phases. Within the first 
step, weights were computed to express the relative importance of factors (criteria) for 
forest fire susceptibility through FAHP. In the second step, the uncertainty and sensitivity 
of Forest Fire Risk Mapping was analyzed as a function of weights using MSC and GSA. 
Finally, the results were validated against the forest fire inventory database. The results 
indicate that further improvement in the accuracy of GIS-based MCDA can be achieved by 
applying the proposed sensitivity uncertainty analysis approach.  

1 Introduction 

Multi-Criteria Decision Analysis (MCDA) techniques have become increasingly wide-
spread in strategic environmental and future hazard prediction decision making (MOSA- 
DEGHI et al. 2009). Combining GIS and MCDA provides powerful approach for Forest Fire 
Risk Mapping (FFRM). The Fuzzy Analytical Hierarchical Process (FAHP) is one of the 
most commonly MCDA techniques has been incorporated into GIS-based suitability pro-
cedures. FAHP is an integrated approach of fuzzy logic and Analytical Hierarchical Process 
(AHP) which retains many of the advantages enjoyed by conventional AHPs. The FAHP 
handles multiple criteria and combinations of qualitative and quantitative data. However, all 
decision making approaches involving natural systems face a number of uncertainties rang-
ing from ambiguity in defining problems and goals to uncertainty in data and models 
(REFSGAARD et al. 2007). In addition, uncertainty in GIS-MCDA may comes from various 
sources such as uncertainty of dataset, criteria weights or model parameters (MALCZEWSKI 
2006). Technically speaking, criteria weights are often the greatest contributor to contro-
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versy and uncertainty (CHEN & ZHU 2010, FEIZIZADEH et al. 2012). Even small changes in 
decision weights and methods may have a significant impact on the rank ordering of the 
criteria. Based on this statement, it is reasonable to mention that the results of GIS-MCDA 
sometimes lead to inaccurate outcomes and undesirable consequences (Feizizadeh & 
Blaschke 2014). In order to reduce the chance of error in GIS-MCDA methods, uncertainty 
analysis is a process that leads to assess the reliability of MCDA’s results in both quan-
titative and qualitative approaches (FEIZIZADEH & BLASCHKE 2014). Although a massive 
amount of papers on susceptibility models were published in the last two decades, only few 
of them have dealt with the evaluation of prediction capability, robustness, and sensitivity 
(MELCHIORRE et al. 2011). The FFRM process developed in current research uses a well-
established GIS-MCDA methods including: FAHP, Monte Carlo Simulation (MCS) and 
variance based Global Sensitivity Analysis (GSA) to compute the inherent uncertainty and 
sensitivity analysis for minimizing the chance of error in GIS-MCDA.  

2 Study Area and Datasets 

The study area was Ramsar Forest which is located in the western part of Mazandaran 
Province, Iran (see figure 1). The study site covers an area about 196.8 Hectare. Forest fire 
is common risk in this area, and between the years 2000 and 2012, totally 12 serious forest 
fire events were reported. Some of these events affected more than 5 hectare of the study 
area. Obviously such events resulted in important biodiversity loss (MNR 2012). Within 
this research we wanted to produce FFRM for identifying the potential areas of forest fire 
risk within the Ramsar Forest. For this goal, relevant criteria of FFRM were considered. In 
selection of relevant criteria it is necessary to be considered that the set of criteria should 
adequately represent the problem domain and contribute towards the ultimate objective 
(TENERELLI & CARVER 2012). Within this study, three main criteria were selected includ-
ing: topography, anthropogenic and forest vegetation property. In doing so, we used slope, 
aspect and elevation as topographic parameters (HEARN et al. 2001). In terms of anthro-
pogenic factors we aimed to employ that these factors which are more correlated to the 
manmade/accidental forest fire. Therefore we considered distance to settlements and roads 
as an effective factors which make frost prone to fire (ZAREKAR 2012). Based on this as-
sumption, seven indices were selected as forest vegetation property which are included: a) 
The Moisture Stress Index (CHAMPAGNE et al. 2001), b) The Carotenoid Reflectance Index 
(GITELSON et al. 2002), c) The Normalized Difference Lignin Index (SERRANO et al. 2002), 
d) The Normalized Difference Nitrogen Index (SERRANO et al. 2002), e) Plant Senescence 
Reflectance Index, f) The Red Edge Normalized Difference Vegetation Index (GITELSON & 

MERZLYAK 1994) and g) The Normalized Difference Water Index (GAO 1995). 
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Fig. 1: Location of the study area 

3 Methodology Scheme  

The research methodology is based on the concept of evaluating the uncertainty of GIS-
MCDA for FFRM through the spatial explicit approaches. The Methodology of research 
consists three different essential steps. The proposed sensitivity and uncertainty analysis is 
based on the spatially explicit simulation of error propagation. For this to goal, we employ 
MCS and variance based GSA for assessing the uncertain weight space. Finally validation 
process performed by using the forest fire inventory database. In this phase we aimed to 
compute the accuracy of FFRM and investigate the improved accuracy of FAHP by means 
of applying sensitive and uncertainty analysis.  

3.1 Criteria Weighting and Fuzzy Membership Functions  

Criterion weights are the weights assigned to the objective and attribute maps (FEIZIZADEH 

& BLASCHKE 2012, 2013). In this stage, the effects of each criteria to the susceptibility of 
forest fire were determined by evaluating the preferences of the criterion to the FFRM. In 
order to assign the relative importance of the predictor variables and produce FFRMs, the 
first step was constructing a pairwise comparison matrix using the previous knowledge of 
goodness-of-fit. The standardized predictor variable values were aggregated based on the 
weights were derived from AHP and FAHP methods. In order to obtain criteria weights, the 
pairwise comparison matrixes of AHP and FAHP were constructed by employing 12 rele-
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vant criteria (see table 1). These pairwise comparison matrixes were formed using initial 
simple ranks obtained from export knowledge. In order to calculate the FAHP weights, 
FAHP based pairwise comparison matrix was prepared based on TFNs (minimum, mean, 
maximum values as m1, m2, m3). Table 1 shows results of applying FAHP for calculating 
criteria weighting. In the application of the AHP and FAHP methods it is important that the 
weights derived from a pairwise comparison matrix are consistent. Therefore, one of the 
strengths of FAHP is that it allows for inconsistent relationships while, at the same time, 
providing a Consistency Ratio (CR) as an indicator of the degree of consistency or incon-
sistency (The CR is used to indicate the likelihood that the matrix judgements were gener-
ated randomly(FEIZIZADEH & BLASCHKE 2012). In our research, the CR value was com-
puted to be about 0.021.This value clearly indicates that the comparisons of characteristics 
were perfectly consistent and that the relative weights were appropriate to be used for pro-
ducing FFRM.  

3.2 Application of FMFs 

In the context of FFRM based on FAHP, the susceptibility values should lie between 0 and 
1. Accordingly, 0 is assigned as none susceptible areas while 1 indicates the high suscept-
ible areas. So far, there is no optimal method for choosing the most appropriate FMFs and 
their respective parameters (FEIZIZADEH et al. 2014a). Generally these values are selected 
according to the preferences of the decision makers. In this process, sigmoidal (s-shaped) 
fuzzy membership functions (i.e., monotonically increasing and monotonically decreasing) 
and user-defined fuzzy membership functions along with crisp membership functions can 
be applied for specifying each FFRM criteria (FEIZIZADEH et al. 2014a). The sigmoidal 
membership function is likely the most commonly used function in fuzzy set theory 
(EASTMAN 2004, LIU et al. 2004), and provides a gradual variation from non-membership 0 
to complete membership 1, whereas it is sometimes inevitable to use user-defined FMFs or 
crisp membership functions (FEIZIZADEH et al. 2013, 2014a). In terms of AHP method, 
each related fuzzy membership functions are divided into 10 equal intervals. In other 
words, apart from starting and end points of each fuzzy membership functions, the area 
under the curve which is greater than 0 and less than 1 is divided into eight equal-sized 
intervals. Nevertheless, all applied functions of FFRM criteria outputs of each parameter 
were classified into groups of FFRM. 

3.3 Applying Monte Carlo Simulation and GSA on FAHP 

The uncertainty of attribute values and weights can be represented as a probability distri-
bution or a confidence interval (FEIZIZADEH et al. 2014b). Accordingly, in order to deal 
with inherent uncertainty associated with FAHP, we applied MCS and GSA approaches for 
minimizing uncertainty of FAHP. Simulation is one of the most appropriate approaches to 
analyse uncertainty propagation through a GIS model, without knowing the functional form 
of the errors (TENERELLI & CARVER 2012). The FAHP-MCS approach takes the probabil-
istic characterization of the pairwise comparisons into account (HAHN 2003; FEIZIZADEH et 
al. 2014b). This approach is based on the association with probability distributions which is 
enough to confirm that one alternative is preferred to another (in the sense of maximizing 
expected utility)which is provided that certain constraints on the underlying utility function 
are satisfied (DURBACH & STEWART 2012). Within this research two essential steps were 
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followed for applying MCS and GSA on FAHP. In the first step, statistical analysis ability 
of MCS used to perform the uncertainty analysis associated with FAHP weights. For this 
goal, our research methodology makes use of the concept of FAHP-MCS, where we con-
sider the criteria weights derived from the FAHP pairwise matrix for the uncertainty analy-
sis using MCS. We introduce uncertainty in the algorithm by creating uniform distributions 
based on the elements of random pairwise. The MCS was performed on FAHP weights, 
were presented in table 1. The simulation was run N times to determine uncertain weights. 
It has to be mention that N is number of simulation which varies from 100 to 10000 accord-
ing to the computational load, the complexity of the model, and the desired accuracy 
(FEIZIZADEH et al. 2014b). In the second step, the variance-based GSA was applied to quan-
titatively determine the weights that have the most influence on the model output. Within 
this step we aimed to determine first order (S), total effect (ST) between criteria.  

Table 1:  Pairwise comparison matrix for dataset layers of forest fire analysis 

Factors (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) Eigen 
value 

(1) PSRI 1            0.0355 

(2) Rendvi 1 1           0.0355 

(3) NDNI 2 2 1          0.0628 

(4) NDLI 2 2 1 1         0.0640 

(5) MSI 5 5 4 4 1        0.1724 

(6) Distance to 
Settlement  

3 3 2 2 1/2 1       0.1078 

(7) Distance to 
Road 

4 4 3 3 1 2 1      0.1657 

(8) Elevation 2 2 1 1 1/2 1/2 1/3 1     0.0674 

(9) Slope 1 1 1/2 1/2 1/3 1/3 1/4 1/2 1    0.0414 

(10) Aspect 1 1 1/2 1/2 1/3 1/3 1/4 1/2 1 1   0.0414 

(11) NDWI 5 5 4 3 1 2 1 3 2 2 1  0.1691 

(12) CRI 1 1 1/2 1/2 1/4 1/3 1/3 1/2 1 1 1/5 1 0.0372 

Consistency ratio: 0.021 

 

Table 2 shows the results of GSA for FFRM. Interpretation of these indices provides infor-
mation about the important factors in the overall ranking options (FEIZIZADEH et al. 2014b). 
According to results of sensitivity and uncertainty analysis slope is identified to be as most 
important criteria for FFRM while the NDNI index turned out as less important criteria.  
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Table 2: Results of GSA 

Factor  Reference 
weights 

Maximum 
weights 

S ST S% ST % 

Slope 0.041 0.051 0.275 0.592 27.5 24.3 

Distance to Road 0.167 0.167 -0.007 0.24 -0.7 9.3 

Distance to Settlements 0.107 0.117 0.031 0.241 3.1 3.1 

MSI index 0.172 0.182 -0.003 0.252 -0.3 9.8 

NDLI index 0.040 0.050 0.101 0.262 10.1 10.2 

NDNI index 0.062 0.062 0 0 0 0 

NDWI index 0.169 0.179 0.015 0.136 1.5 5.3 

PSRI index 0.035 0.045 -0.015 0.236 -1.5 9.2 

RENDVI index 0.035 0.045 0.074 0.326 7.4 12.7 

CRI index 0.037 0.047 0.0032 0.08 0.78 1.2 

Elevation 0.067 0.077 0.001 0.05 0.1 2 

Aspect 0.041 0.051 0.063 0.204 6.3 7.9 

4 Results  

In order to produce FFRM maps, forest fire risk maps were obtained based on two ap-
proaches. The conventional approach was based on the application of the FAHP as standard 
methodology of GIS-MCDA for developing FFRM. While, the second approach was a 
proposed approach of GSA-FAHP for employing FAHP under sensitivity and uncertainty 
analysis. In doing so, the FFRM maps were produced using the results of two group of 
weights for both of the FAHP and GSA-FAHP approaches (see Table 1 for FAHP and 
Table 2 for GSA-FAHP). Figure 2 represents results of FFRM for FAHP and GSA-FAHP. 
In order to derive FFRMs, first result of FAHP was used and all criteria were combined for 
producing FFRM (Fig. 2a). Secondly, in the following computation of a baseline FFRMs, 
an alternative of forest fire risk map was computed by applying revised weights which were 
derived from GSA-FAHP (See Fig. 2b). Finally, the validation process was performed for 
examining the efficacy of each method. Within this step we aimed to examine and test the 
accuracy of the FAHP and GSA-FAHP against known forest fire locations occurred in the 
study area. The results of this comparison indicated that the very high susceptible category 
of FAHP map covers about 33% of known forest fire locations, while the high and moder-
ate categories of this map together covered about 25% of known forest fire locations. The 
low susceptibility category also covered about 16% of known forest fire events. In terms of 
validation process for GSA-FAHP, results indicated the significant improvement in accu-
racy of FAHP when very high susceptible category of GSA-FAHP covered about 58% of 
known forest fire locations. The high and moderate categories of this map indicated the 
accuracy of 25% and 0.08% respectively.  
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Fig. 2:  Results of FFRM, a) FFRM produced based on FAHP and b) FFRM produced 

based on GSA-FAHP 

5 Conclusion and Outlook 

According to results of this research, GIS-MCDA is indeed provides powerful methodology 
for spatial analysis and environmental modelling. However, due to the large amount of 
parameters and the heterogeneity of data sources, the uncertainty of the results is typically 
unclear (FEIZIZADEH & BLASCHKE 2014). Within this research we aimed to introduce a 
novel approach for employing FAHP under concept of sensitivity and uncertainty analysis. 
Our initial results demonstrated applying sensitivity and uncertainty analysis on FAHP 
based on GIS-MCDA leads to improve accuracy of results significantly. It also turned out 
that even small changes in decision weights and methods may have a significant impact on 
the rank ordering of the criteria and may subsequently change the results (FEIZIZADEH & 

BLASCHKE 2012). In this paper, we focused on the applying of spatially explicit approach 
for sensitive and uncertainty analysis of GIS-MCDA, integrating FAHP and MCS-GSA for 
optimization algorithm and assessing the certainty of outcomes. As results clearly indicated, 
further improvement in accuracy of GIS-based MCDA can be achieved by employing the 
MCS method and accordingly integrating GSA for sensitivity analysis of the weights de-
rived from FAHP. This study demonstrates the importance of spatially explicit approach for 
incorporating GIS and MCDA models.  

 

 



Fuzzy Analytical Hierarchical Process and Spatially Explicit Uncertainty Analysis 79 

References  

CHAMPAGNE, C., PATTEY, E., BANNARI. A. & STRATCHAN, I. B. (2001), Mapping Crop 
Water Status: Issues of Scale in the Detection of Crop Water Stress Using Hyper-
spectral Indices. In: Proceedings of the 8th International Symposium on Physical 
Measurements and Signatures in Remote Sensing, Aussois, France, 79-84. 

CHEN, J. & ZHU, Q. (2010), Uncertainty and decision strategy analysis of GIS-based or-
dered weighted averaging method. In: IEEE 2010 International conference on infor-
mation, networking and automation (ICINA), 375-379. ISBN 978-1-4244-8106-4. 

DURBACH, I. N. & STEWART, T. J. (2012), Modeling uncertainty in multi-criteria decision 
analysis. European Journal of Operational Research, 223, 1-14. 

FEIZIZADEH, B. & BLASCHKE, T. (2012), Uncertainty and Decision Strategy Analysis of 
GIS-based Ordered Weighted Averaging Method for Landslide susceptibility mapping 
in Urmia lake basin, Iran. International conference of GIScience 2012, Columbus, 
Ohio, USA, September, 18-21, 2012. 

FEIZIZADEH, B., BLASCHKE, T. & NAZMFAR, H. (2012), GIS-based Ordered Weighted Av-
eraging and Dempster Shafer Methods for Landslide Susceptibility Mapping in Urmia 
lake Basin, Iran, International Journal of Digital Earth.  
DOI:10.1080/17538947.2012.749950. 

FEIZIZADEH, B. & BLASCHKE, T. (2013), GIS-multicriteria decision analysis for landslide 
susceptibility mapping: comparing three methods for the Urmia Lake Basin, Iran. 
Nat.Hazards, 65, 2105-2128. 

FEIZIZADEH, B., BLASCHKE,T. & SHADMAN ROODPOSHTI, M. (2013), Integration of GIS 
based Fuzzy set theory and Multicriteria Evaluation methods for Landslide Sus-
ceptibility Mapping. International Journal of Geoinformatic, 9 (3), 49-57. 

FEIZIZADEH, B. & BLASCHKE, T. (2014), Uncertainty analysis of GIS-Multicriteria based 
landslide susceptibility mapping. International Journal of Geographic Information Sci-
ence, 28 (3), 610-638. 

FEIZIZADEH, B., JANKOWSKI, P. & BLASCHKE, T. (2014a), A GIS based Spatially-explicit 
Sensitivity and Uncertainty Analysis Approach for Multi-Criteria Decision Analysis. 
Computers and Geosciences, 84, 81-95. 

FEIZIZADEH, B., SHADMAN ROODPOSHTI, M., JANKOWSKI, P. & BLASCHKE, T. (2014b), 
GIS-Based Extend Fuzzy Multi-Criteria Evaluation for Landslide Susceptibility Map-
ping. Computers and Geosciences, 64, 81-95.  

EASTMAN, J. R. (2004), IDRISI Kilimanjaro: Guide to GIS and Image Processing. Clark 
University, Worcester, Clark Labs. 

GAO, B. C. (1995), Normalized Difference Water Index for Remote Sensing of Vegetation 
Liquid Water from Space. In: Proceedings of SPIE, 2480, 225-236. 

GITELSON, A. A., ZUR, Y., CHIVKUNOVA, O. B. & MERZLYAK. M. N. (2002), Assessing 
Carotenoid Content in Plant Leaves with Reflectance Spectroscopy. Photochemistry 
and Photobiology, 75, 272-281. 

GITELSON, A. A. & MERZLYAK, M. N. (1994), Spectral Reflectance Changes Associated 
with Autumn Senescence of Aesculus Hippocastanum L. and Acer Platanoides L. 
Leaves. Spectral Features and Relation to Chlorophyll Estimation. Journal of Plant 
Physiology, 143, 286-292. 



 B. Feizizadeh, K. Omrani and F. Babaei Aghdam 80

HEARN, P., J. R., HARE, T., SCHRUBEN, P., SHERRILL, D., LAMAR, C. & TSUSHIMA, P. 
(2001), Global GIS database: digitalatlas of South Asia. US: Geological Survey. Digi-
tal Data Series DDS-62-C. 

HAHN, E. D. (2003), Decision making with uncertain judgments: a stochastic formulation of 
the analytic hierarchy process. Journal of the Decision Sciences Institute, 34 (3),  
443-466. 

LIU, J. G., MASON, P., HILTON, F & LEE, H. (2004), Detection of rapid erosion in SE Spain: 
a GIS approach based on ERS SAR coherence imagery. Photogramm. Eng. Remote 
Sens., 70 (10), 1185-1197. 

MELCHIORRE, C., CASTELLANOS ABELLA, E. A., VAN WESTEN, C. J. & MATTEUCCI, M. 
(2011), Evaluation of prediction capability, robustness, and sensitivity in non-linear 
landslide susceptibility models, Guanta namo, Cuba. Computers & Geosciences, 37, 
410-425. 

MALCZEWSKI, J. (2006), GIS-based multicriteria decision analysis: a survey of literature. 
International Journal of Geographical Information Science, 20 (7), 703-726. 

MNR, MINISTRY OF NATURAL RESOURCES, MAZANDARAN PROVINCE. (2012), Forest fire 
event report. Iran. 

MOSADEGHI, R., TOMLINSON, R., MIRFENDERESK, H. & WARNKEN, J. (2009), Coastal Man-
agement Issues in Queensland and Application of the Multi-Criteria Decision Making 
Techniques. Journal of coastal research, SI56, 1252-1256. 

REFSGAARD, J. C., VAN DER SLUIJS, J. P., LAJER HØJBERG, A. & VANROLLEGHEM, P. A. 
(2007), Uncertainty in the environmental modelling process A framework and guid-
ance. Environmental modelling & software, 22 (11), 1543-1556. 

SERRANO, L., PENUELAS, J. & USTIN, S. L (2002), Remote Sensing of Nitrogen and Lignin 
in Mediterranean Vegetation from AVIRIS Data: Decomposing Biochemical from 
Structural Signals. Remote Sensing of Environment. 81, 355-364. 

TENERELLI, P. & CARVER, S. (2012), Multi-criteria, multi-objective and uncertainty analy-
sis for agro-energy spatial modeling. Applied Geography, 32, 724-736. 

ZAREKA, A. R., VAHIDI, H., KAZEMI ZAMANI, B., GHORBANI, S. & JAFARI, H. (2012), Forest 
fire hazard mapping using fuzzy AHP and GIS, study area: Gillan province of Iran, In-
ternational Journal on “Technical and Physical Problems of Engineering” (IJTPE)  

 


