
Nicht nur im Maschinenbau, auch in der Inge-
nieurgeodäsie muss die Aufgabe gelöst werden,
Freiformflächen an Daten von Laserscannern
oder ähnlichen Instrumenten anzupassen. Dabei
treten fast ebenso viele unbekannte Parameter
wie Datenpunkte auf. Ein schnelles Verfahren zur
Anpassung von Flächenmit NURBS (nonuniform
rational B-splines) wird daher mit Hilfe der
Schätzung sich überkreuzender Kurven ange-
wendet. Es benötigt näherungsweise nur die
Wurzel aus der Anzahl der Datenpunkte als
unbekannte Parameter. Mit einfachen Beispielen
generierter Messungen und Messungen des La-
serscanners Leica HDS 3000 wird gezeigt, dass
die Anpassung der Freiformflächen mit einer
Genaugkeit erfolgen kann, die die Genauigkeit
der gemessenen Daten approximiert.

Introduction

Objects can now be recorded with high resolution within a
short time by laserscanners or similar instruments like la-
sertrackers. The aim of the data acquisition is often the
analytical representation of the surface being scanned.
This is not difficult for simple surfaces like planes,
spheres or cylinders. More demanding are free-form sur-
faces. This task arises also for reverse engineering which
is now discussed in engineering geodesy, cf. HENNES

(2006), HERRMANN and MöSER (2008). In reverse engineer-
ing the coordinates of points at the surface of a manufac-
tured object are measured and then approximated by an
anlytical model of computer-aided design. This is accom-
plished by either interactive construction of the model or
by fitting a surface to the data or by a combintion of both
methods.
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Reverse engineering generally uses NURBS (nonuniform
rational B-splines) or their special cases, nonuniform non-
rational B-splines, to represent surfaces. A vast literature
on NURBS exists as well as on the special tasks of reverse
engineering. There are books introducing NURBS like
PIEGL and TILLER (1997), FARIN and HANSFORD (2000), RO-

GERS (2001) and review articles in journals like PIEGL
(1991). For an introduction to reverse engineering see
VARADY et al. (1997). Software exists like Rhinoceros
for constructing NURBS surfaces.
In the following we will solely concentrate on fitting free-
form surfaces in three-dimensional space to measured
data points. NURBS are used to represent the surfaces
in a parametric form. The points of a NURBS surface
are linearly related to a grid of unknown control points,
if the knots of the B-spline basis functions, the location
parameters of the measured points and the weights of
the control points are known. The unknown control points
can be determined by interpolating the measured points by
a surface as shown by BARSKYand GREENBERG (1980). The
linear relations may also be used as observation equations
for a simultaneous estimation of the unknown control
points in case of more data than unknown parameters,
cf. PIEGL (1991), SARKAR and MENQ (1991). In addition,
the unknown location parameters of the measured points
can be estimated, which leads to a non-linear least squares
fit, cf. LAI and LU (1996). Finally, the weights of the con-
trol points may also be considered as unknown parameters
of a non-linear adjustment as suggested by MA and KRUTH

(1998).
The quality of a fitted NURBS surface depends on the re-
solution of the measured data. Laserscanners and similar
instruments provide a high resolution of the data within a
short time, but lead to a huge number of unknown control
points. Computationally efficient estimation procedures
should therefore be used. The estimation, which is applied
here, is a modification of the skinning also called lofting
process, cf. TILLER (1983), PIEGL (1991). Instead of inter-
polating a series of cross-sectional curves for obtaining a
surface, the curves are being fitted. If there are nþ 1
points of a grid of control points in the direction of the
x coordinates and lþ 1 points in the direction of the y co-
ordinates, there are ðnþ 1Þ � ðlþ 1Þ unknown three-di-
mensional coordinates of the control points to be simul-
taneously estimated. In case of cross-sectional curve fits
two adjustments are needed, the first one with only nþ 1
unknown control points and the second one with only
lþ 1 unknown points. Thus, estimates for a large amount
of data will be much easier handled, especially if one con-
siders that matrices are sparse in connection with splines.
The cross-sectional curve fits of the skinning process are
considered an approximation of the simultaneous estima-
tion of the control points (PIEGL and TILLER, 1997, p. 419).
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However, it was shown by KOCH (2009), that both meth-
ods give identical results. The simultaneous estimation of
the control points should therefore be avoided.
As an example, a surface is fitted to the data of a lasers-
canner. This problem is often solved by slicing the point
cloud measured by the laserscanner to extract sectional
contour lines, cf. YUWEN et al. (2006). However, if a la-
serscanner, for instance Leica HDS 3000, determines
the three-dimensional coordinates of points in a grid,
cross-sectiomal contour lines follow directly from the
lines of the grid. This fact is used here.
In the following Section a short introduction to nonrationl
and rational B-spline curves will be given followed by a
presentation of B-spline surfaces in Section 3. Section 4
contains simple examples of surfaces fitted by the skin-
ning process to generated data and to measurements of
the laserscanner Leica HDS 3000. To judge the accuracy
of the estimated surfaces, mean squared differences are
computed. The paper finishes with conclusions.

2 B-spline curves

A p th-degree B-spline (basis spline) curve is defined by,
cf. PIEGL and TILLER (1997, p. 81),

xðuÞ ¼
Xn
i¼o

Ni;pðuÞpi: ð1Þ

The point xðuÞ of the curve is given in a parametric form
depending on the parameter u by

xðuÞ ¼ xðuÞ
yðuÞ
����

���� ð2Þ

with xðuÞ and yðuÞ being the coordinates of xðuÞ in a plane.
The points pi ¼ jxi; yij 0 are the control points. They form
the control polygon. The B-spline curve follows approxi-
mately the shape of this polygon. Ni;pðuÞ with
i 2 f0; . . . ; ng are the p th-degree B-spline basis func-
tions. They are efficiently computed by a recursion formu-
la due to COX (1972) and DE BOOR (1972)

Ni;0ðuÞ ¼ 1 if ui � u < uiþ1

0 otherwise

�

Ni;pðuÞ ¼ u� ui

uiþp � ui
Ni;p�1ðuÞ þ uiþpþ1 � u

uiþpþ1 � uiþ1

Niþ1;p�1ðuÞ

ð3Þ
where

u ¼ ju0; . . . ; umj 0 with ui � uiþ1; i 2 f0; . . . ;m� 1g
ð4Þ

is the ðmþ 1Þ � 1 knot vector which contains a sequence
of nondecreasing real numbers, the knots. The basis func-
tions Ni;pðuÞ represent piecewise polynomials for the half-
open interval ui � u < uiþ1 so that the B-spline curve (1)
consists of polynomial segments. Evaluating the basis
functions by (3) leads to a triangular pattern of depend-
ence. We obtain, for instance, with p ¼ 3 by omitting
the parameter u

Ni;0 Ni;1 Ni;2 Ni;3

Ni�1;1 Ni�1;2 Ni�1;3

Ni�2;2 Ni�2;3

Ni�3;3

ð5Þ

This pattern indicates that for any knot interval
ui � u < uiþ1 there are at most pþ 1 nonzero basis func-
tions, i.e. Ni�p;p; . . . ;Ni;p. For checking the computations
of the basis functions the relation

Xi

j¼i�p

Nj;pðuÞ ¼ 1 for all u 2 ½ui; uiþ1Þ ð6Þ

is helpful.
The inverse of the scheme (5) is obtained with (3) for
p ¼ 3 by the triangular pattern

Ni;3 Ni;2 Ni;1 Ni;0

Niþ1;2 Niþ1;1 Niþ1;0

Niþ2;1 Niþ2;0

Niþ3;0

ð7Þ

It shows that Ni;pðuÞ ¼ 0, if u is outside the half-open in-
terval ½ui; uiþpþ1Þ. This indicates the property of local
control. If the control point pi is moved, the curve xðuÞ
changes only for u 2 ½ui; uiþpþ1Þ. B-spline curves are
therefore well suited for interactive modifications in com-
puter-aided design.
In the following we will work with B-spline curves having
the property of endpoint interpolation, which means, xðuÞ
starts at the first control point p0 and ends at the last con-
trol point pn. It is obtained with open or nonperiodic knot
vectors in contrary to periodic ones. An open knot vector u
is given by

u ¼ ja; . . . ; a; upþ1; . . . ; um�p�1; b; . . . ; bj 0
for a � u � b ð8Þ

or

u ¼ j0; . . . ; 0; upþ1; . . . ; um�p�1; 1; . . . 1j 0
for 0 � u � 1 ð9Þ

where the first and the last knot have multiplicity
k ¼ pþ 1, cf. PIEGL and TILLER (1997, p. 81). One could
also introduce multiplicity k ¼ p, cf. FARIN and HANSFORD

(2000, p. 141) and ROGERS (2001, p. 51).
When computing a B-spline curve only parameter values
within the range of knots

up; upþ1; . . . ; um�p ð10Þ
are considered. Generally, these interior knots are not
equally spaced which leads to the nonuniform B-splines
in contrary to the uniform ones which are equally spaced.
Interior knots may also have multiplicity up to order p.
The number s of piecewise polynomials equals the num-
ber of intervals of nonzero lengths within the interior
knots. If all interior knots have multiplicity one, it is

s ¼ m� 2p: ð11Þ
Looking at (5) as well as (8) or (9) it becomes obvious that
the number nþ 1 of basis functions, which is equal to the
number nþ 1 of control points, follows from the number
mþ 1 of knots and the degree p by

AVN 4/2009 135

K. R. Koch – Fitting Free-Form Surfaces to Laserscan Data by NURBS



n ¼ m� p� 1 ð12Þ
and therefore with (11)

n ¼ sþ p� 1: ð13Þ
The basis function Ni;pðuÞ is because of (3) a linear com-
bination of two basis functions of degree p� 1. The B-
spline curve xðuÞ is therefore infinitely differentiable
within the knot intervals and at least p� k times continu-
ously differentiable at a knot of multiplicity k so that the
curve is xðuÞp�1

continuous for all interior knots of multi-
plicity one.
A curve based on p th-degree nonuniform rational B-
splines (NURBS) is defined by, c.f. PIEGL and TILLER

(1997, p. 117).

xðuÞ ¼
Xn
i¼0

Ni;pðuÞwipi=
Xn
i¼0

Ni;pðuÞwi ð14Þ

where wi denotes the weight associated with the control
point pi. As a special case the nonrational B-spline curve
(1) is obtained with wi ¼ 1 because of (6). If wi for pi is
increased, the point xðuÞ of the curve moves closer to pi
and further away, if the weight is decreased. Due to the
local control mentioned in connection with (7), the curve
xðuÞ changes only for u 2 ½ui; uiþpþ1Þ. This property in ad-
dition to the local control gives more flexibility for inter-
active modifications of curves in computer-aided design.
NURBS curves can be efficiently expressed by nonra-
tional B-spline curves, if homogeneous coordinates are
used, that is by representing two-dimensional points by
points in three dimensions. We introduce the three-dimen-
sional weighted control points

pwi ¼ jwixi; wiyi; wij 0 ¼ jXi; Yi; Wij 0 ð15Þ
and accordingly the three-dimensional coordinates xwðuÞ.
The nonrational B-spline curve in three-dimensional
space is defined by

xwðuÞ ¼
Xn
i¼0

Ni;pðuÞpwi : ð16Þ

We now apply perspective mapping, i.e. we map xwðuÞ
onto the hyperplane W ¼ 1. Thus, we divide the first
two coordinates of xwðuÞ by the third coordinate W 6¼ 0
and obtain the two coordinates

xðuÞ ¼ XðuÞ
WðuÞ ;

YðuÞ
WðuÞ

����
����
0
: ð17Þ

This gives the NURBS curve (14). One can therefore con-
tinue to work with the nonrational B-spline curve (1). If a
NURBS curve is needed, one introduces the three-dimen-
sional representation (16) and obtains by dividing by the
weight wi the NURBS curve (14).
A point xðuÞ of the B-spline curve (1) is connected to the
control points pi by a linear relation. If points xð�uuoÞ with
location parameters �uuo for o 2 f1; . . . ; rg are given and
we want to approximate them by a p th-degree B-spline
curve, the nþ 1 control points pi for i 2 f0; . . . ; ng with
r > nþ 1 need to be determined. Because of the linear
relation, Eq. (1) leads immediately to the observation
equations for estimating the unknown control points

N0;pð�uu1Þp0 þ . . .þ Nn;pð�uu1Þpn ¼ xð�uu1Þ þ e1

N0;pð�uu2Þp0 þ . . .þ Nn;pð�uu2Þpn ¼ xð�uu2Þ þ e2 ð18Þ
......................................................................
N0;pð�uurÞp0 þ . . .þ Nn;pð�uurÞpn ¼ xð�uurÞ þ er

where eo for o 2 f1; . . . ; rg denotes the vector of errors.
Using matrix notation we get

Xb ¼ yþ e ð19Þ
with X being the r � ðnþ 1Þ matrix of B-spline basis
functions, b ¼ jp0; . . . ; pnj 0 the ðnþ 1Þ � 1 vector of un-
known control points, y ¼ jxð�uu1Þ; . . . ; xð�uurÞj 0 the r � 1
vector of observations and e ¼ je1; . . . ; erj 0 the vector
of errors. The unknown parameters b are estimated by
b̂b with the normal equations, cf. KOCH (1999, p. 158),

X 0Xb̂b ¼ X 0y: ð20Þ
The question of determining the parameters �uuo for the gi-
ven points xð�uuoÞ will be discussed in the following Sec-
tion 3. After having estimated the control points pi any
point of the curve may be computed by (1). If the curve
needs to be changed without changing the control points, a
NURBS curve (14) using (16) can be computed with in-
troducing weights for the control points.

3 B-spline surfaces

The B-spline curve according to (1) and (2) is given in a
parametric form depending on one parameter. The B-
spline surface sðu; vÞ in three-dimensional space is also
introduced in a parametric form depending on the two
parameters u and v

sðu; tÞ ¼
xðu; tÞ
yðu; tÞ
zðu; tÞ

������
������: ð21Þ

Different formulations exist for parametric surfaces, cf.
ROGERS (2001, p. 6). A representation which is often ap-
plied in computer-aided design is the tensor product
scheme, cf. PIEGL and TILLER (1997, p. 34), which is a bi-
linear form, cf. KOCH (1999, p. 44),

sðu; tÞ ¼
Xn
i¼0

Xl

j¼0

Ni;pðuÞNj;pðtÞpi;j ð22Þ

where sðu; vÞ is a point on the B-spline surface,Ni;pðuÞ and
Nj;qðtÞ are B-spline basis functions of degree p and q and
pi;j establish a grid of three-dimensional control points.
With sðu; t ¼ constÞ an isoparametric curve in the direc-
tion u on the surface is defined, which shall point along the
x axis of the coordinate system, and sðu ¼ const; tÞ is an
isoparametric curve in the direction t pointing along the y
axis.
The B-spline surface (22) consists of patches of bivariate
polynomials formed by the rectangles ui � u � uiþ1 and
tj � t � tjþ1. The surface follows approximately the grid
of control points. If the ðmþ 1Þ � 1 knot vector u for the
parameter u is given by (8) or (9) and the vector t for the
parameter t accordingly, the surface interpolates the con-
trol points p0;0, pn;0, p0;l, pn;l at the four corners of the grid.
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The surface sðu; tÞ possesses like the B-spline curve the
property of local control. If a control point pi;j is moved,
only the patches of the surface determined by the rectan-
gle of knot intervals ½ui; uiþpþ1Þ and ½tj; tjþqþ1Þ are chan-
ged. The number s of piecewise polynomials in the direc-
tion u follows from (11) and the number in the direction t
accordingly. Within the rectangle formed by the knot in-
tervals ½ui; uiþ1Þ and ½tj; tjþ1Þ the surface sðu; tÞ is indefi-
nitely differentiable. At the inner knots of the vectors u or
t it is p� k or q� k times differentiable in the direction of
u or t with k being the multiplicity of the knot.
A surface based on nonuniform rational B-splines
(NURBS) is given with (14) and (22) by

sðu; tÞ ¼
Pn

i¼0

Pl
j¼0 Ni;pðuÞNj;pðtÞwi;jpi;jPn

i¼0

Pl
j¼0 Ni;pðuÞNj;pðtÞwi;j

: ð23Þ

As a special case the nonrational B-spline surface (22) fol-
lows with wi;j ¼ 1 because of (6). A NURBS surface of-
fers in addition to the local control of (22) the possibility
to introduce weights wi;j for the control points pi;j by
which the shape of the surface can also be locally chan-
ged. This is helpful for the interactive construction of sur-
faces by computer-aided design.
As NURBS curves with (16), NURBS surfaces can be re-
presented by the nonrational B-spline surface (22) in four-
dimensional space, if homogeneous coordinates are intro-
duced

swðu; tÞ ¼
Xn
i¼0

Xl

j¼0

Ni;pðuÞNj;pðtÞpwi;j ð24Þ

with pwi;j ¼ jwi;jxi;j; wi;jyi;j; wi;jzi;j; wi;jj 0 being the
weighted control points in four-dimensional space. By di-
viding the first three coordinates by the fourth one for
wi;j 6¼ 0 the NURBS surface (23) follows.
Like fitting B-spline curves to given points by (20), sur-
faces shall now be fitted to measured data. Free-form sur-
faces will be considered which cannot be represented by
simple surfaces like planes, spheres, cones or cylinders.
The quality of estimating a surface depends on the reso-
lution of the data by which a surface is determined. If sur-
faces are fitted to data of laserscanners or similar instru-
ments, a dense net of points can be rapidly measured.
Thus, not the resolution is a problem but handling the lar-
ge amount of data, as already mentioned in the introduc-
tion. Cross-sectional curve fits are therefore computed
without solving for the location parameters u and t of
the measured points and for the weights wi;j of the control
points, which leads to nonlinear estimation problems.
Let a grid of r � e points sð�uuo;�ttdÞ with location para-
meters �uuo and �ttd, o 2 f1; . . . ; rg, d 2 f1; . . . ; eg be mea-
sured to estimate the control points pi;j with i 2 f0; . . . ; ng
and j 2 f0; . . . ; lg of a ðnþ 1Þ � ðlþ 1Þ grid for
r > nþ 1 and e > lþ 1. We rewrite (22) to obtain

sð�uuo;�ttdÞ ¼
Xn
i¼0

Ni;pð�uuoÞf i;d
for d 2 f1; . . . ; eg ð25Þ

with

f i;d ¼
Xl

j¼0

Nj;qð�ttdÞ pi;j ð26Þ

where f i;d are the control points of the isoparametric curve
sðu; t ¼ constÞ on the surface. The control points pi;j are
estimated in two steps. The first one consists of estimating
f i;d by using (25) as observation equations like (18) for
fitting e times a B-spline curve to the given r data points
sð�uuo;�ttdÞ for o 2 f1; . . . ; rg with d 2 f1; . . . ; eg. Only one
Cholesky factorization of the normal equations is needed,
the e back solutions give the three coordinates of the
points f i;d for d 2 f1; . . . ; eg, cf. KOCH (1999, p. 30).
The approximately constant y cordinates for each of the
e adjustments enter as observations and follow also as es-
timates because of (6).
The observation equations for the second step of the pa-
rameter estimation are obtained from (26). They serve for
fitting B-spline curves ðnþ 1Þ times to the e given points
f i;d for d 2 f1; . . . ; eg so that the control points pi;j with
i 2 f0; . . . ; ng and j 2 f0; . . . ; lg are estimated. Thus, the
skinning process consists of cross-sectional curve fits
along isoparametric lines first in the u and then in the t
direction, cf. TILLER (1983), PIEGL (1991). Instead of sol-
ving for ðnþ 1Þ � ðlþ 1Þ unknown control points, two
estimates are computed the first one with nþ 1 unknown
parameters, the second one with lþ 1 unknown para-
meters. This gives a simple method of estimating B-spline
surfaces, whose results agree with the simultaneous esti-
mates of the control points as mentioned in the introduc-
tion. It preserves the accuracy of the data as will be shown
in the next Section 4. Any point on the B-spline surface
can be computed by (25) and (26) from the estimated con-
trol points pi;j. If this surface needs to be modified,
weights wi;j are introduced for the control points so that
a NURBS surface is computed by (24). This will be de-
monstrated in Section 4.
The x, y and z coordinates of the grid of points sð�uuo;�ttdÞ
are measured. As mentioned above, the isoparametric
curve in the direction u points along the x axis and the
isoparametric curve in the direction t along the y axis.
The unknown parameters �uuo are determined by the chord
lengths, i.e. by the distances of the points on the isopara-
metric curve in the direction of the x axis for each value y
of the grid. The mean over all values for y gives �uuo for
o 2 f1; . . . ; rg. Correspondingly, the parameters �ttd are
determined. The inner knots ui and tj in the u and t direc-
tions are evenly distributed. The fitted surface should cap-
ture the shape of the data. It may not oscillate between the
data points but smooth the variances of the data. This is
accomplished by choosing the number of polynomial seg-
ments in the u and t direction smaller than the number r
and e of data points in the x and y direction.

4 Numerical examples

To test the method (25) and (26) for fitting surfaces to
data, the z coordinates of points for a grid of x and y co-
ordinates have been generated representing a surface
within a rectangle of x ¼ 7 m and y ¼ 5 m. The z coor-
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dinates are computed by the probability density function
of a bivariate normal distribution multiplied by 100 with
the maximum height of 3.03 m at x ¼ 4 m and y ¼ 3 m. It
is assumed that the z coordinates represent measurements
with standard deviations of 1 cm. Random variates from
the normal distribution with expected values 0 cm and
standard deviations 1 cm have therefore been added to
the z coordinates, cf. KOCH (2007, p. 197).
For the first example the measured z coordinates for a grid
of 15� 11 points are given and shown in Fig. 1. A surface
is fitted to the data by (25) and (26) with p ¼ q ¼ 3 and 7
polynomial segments in x direction and 5 segments in y
direction. Thus, the unknown control points form a grid
of 10� 8 points because of (13). The standard deviation
of the z coordinates resulting from the parameter estima-
tion is 0.96 cm which is approximately equal to the stan-
dard deviation of 1 cm of the measured z coordinates, see
first line of Table 1.
To check whether the adjusted surface does not oscillate
between the data points but catches its shape, the coordi-
nates of a grid of 36� 26 points are computed with the
estimated control points by (25) and (26) and shown in
Fig. 2. These points are chosen such that they do not co-
incide with the data points. The differences for the
36� 26 points between the z coordinates of the adjusted
surface and the z coordinates times 100 of the bivariate
normal distribution for these points lie between
�2:17 cm and 2.09 cm. The square root of the mean
squared differences is 0.89 cm, see first line of Table 1.
These results together with Fig. 2 show that the fitted sur-
face represents the surface generated by the bivariate nor-
mal distribution very well. By introducing more data
points by a grid of 22� 16 and of 29� 21 points the sur-
face fits can be slightly improved as shown by the results
of the second and third line of Table 1.
As a further example, a standing tube for ventilation made
of concrete was chosen with the outside having the shape
of an octagon, whose planes meet in perpendicular rough
edges. The coordinates of the octagon have been mea-
sured by the laserscanner Leica HDS 3000. Three planes
are visible from the position chosen for the laserscanner,
and they are scanned by 47 points in the horizontal x di-
rection and 11 points in the vertical z direction, see Fig. 3.
The height is now representd by the y coordinate and not
by the z coordinate as before. The two rough edges were
not scanned. The distances from the instrument to the oc-
tagon vary from 6.22 m to 7.28 m.
As can be seen from Fig. 3 the scanned points do not lie
exactly on straight lines due to deviations of the surface of
the octagon from planes. A free-form surface is fitted by

(25) and (26) to the scanned data with p ¼ q ¼ 3 and 14
polynomial segments in x direction and 4 in z direction so
that a grid of 17� 7 unknown control points has to be es-
timated. The standard deviation of this adjustment results
in 0.5 cm, which represents the accuracy of the measured

Fig. 1: Grid of 15� 11 points with z coordinates having stan-
dard deviations of 1 cm

Fig. 2: Grid of 36� 26 points on the fitted surface

Table 1: Results for fitting surfaces to three different grids of points

Grid of points Polynomial segments Std. dev.
measurem.

Points on fitted surface Dev. in z
min. max.

Sqrt. of mean
sq. dev. in z

x y x y [cm] x y [cm] [cm] [cm]

15 11 7 5 0.96 36 26 � 2.17 2.09 0.89

22 16 7 5 0.99 36 26 � 2.08 1.95 0.77

29 21 9 7 1.02 36 26 � 1.89 1.85 0.62
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y coordinates, because for distances of about 4.70 m to a
well reflecting plane surface a standard deviation of the y
coordinates of about 0.3 cm was obtained for the same in-
strument (KOCH, 2008a). The remaining 0.2 cm can be at-
tributed to the rough surface of concrete. The coordinates
of a grid of 74� 17 points on the fitted surface, which do
not coincide with the data points, are computed by the es-
timated control points.
To check whether this surface catches the shape of the
measured data, a plane is fitted to the scanned points
of the middle plane of the octagon. The x and z coordinates
of this adjustment are held fixed, because the variances of
these coordinates are much smaller than the ones of y co-
ordinates (KOCH, 2008a). The standard deviation of the y
coordinates from fitting the plane is 0.6 cm. Is is slightly
larger than the standard deviation of 0.5 cm for fitting the
surface due to deviations, mentioned above, of the surface
of the octagon from the surface of the plane. The differ-
ences between the y coordinates of the surface fit and the

ones of the adjusted plane vary between �4:5 cm and
1.4 cm and the square root of the mean squared differ-
ences equals 1.0 cm.
The fitted surface can be moved closer to the adjusted
plane by computing the NURBS surface (23). The weights
for the estimated control points are set to wi;j ¼ 1 except
for the two lines of control points with varying z values
and same x values at both ends of the middle plane which
get wi;j ¼ 1:6. The NURBS surface is computed for the
same grid of 74� 17 points mentioned above and shown
in Fig. 4. As can be seen the two edges where the three
planes meet are rounded and the irregularities of the
planes shown in Fig. 3 are smoothed. The differences
of the y coordinates of the NURBS surface and the
ones of the fitted plane now are smaller and vary between
�2:4 cm and 2.2 cm. The square root of the mean squared
differences is 0.8 cm. Its discrepancy from the standard
deviation of 0.5 cm of the surface fit is caused by the
fact that the scanned data does not lie exactly in a plane
because of the rough concrete. The results therefore show
that fitting a NURBS surface to scanned data can be
achieved with an accuracy which approximates the accu-
racy of the laserscanner.

5 Conclusions

It is shown that the skinning process leads to an efficient
method for fitting free-form surfaces to measured data.
Numerical results for simple examples of generated
data and measurements of the laserscanner Leica HDS
3000 indicate that the surfaces are fitted with an accuracy
that approximates the one of the data. This has been shown
by computing standard deviations and mean squared dif-
ferences. For more elaborate error studies Monte Carlo
simulations are needed as applied to independent mea-
surements by KOCH (2008b) and to correlated data by
KOCH (2008a).
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Abstract

The task of fitting free-form surfaces to data of
laserscanners or similar instruments has to be
solved not only in reverse engineering but also in
engineering geodesy. It leads to almost as many
unknown parameters as data points. A fast
method for fitting surfaces by NURBS (nonuni-
form rational B-splines) is applied by estimating
cross-sectional curves. It needs approximately
only the square root of the number of data points
as unknown parameters. It is shown for simple
examples of generated data and data of the la-
serscanner Leica HDS 3000 that the free-form
surfaces can be fitted with an accuracy which
approximates the accuracy of the measured data.

Zusammenfassung

Nicht nur im Maschinenbau, auch in der Inge-
nieurgeodäsie muss die Aufgabe gelöst werden,
Freiformflächen an Daten von Laserscannern
oder ähnlichen Instrumenten anzupassen. Dabei
treten fast ebenso viele unbekannte Parameter
wie Datenpunkte auf. Ein schnelles Verfahren zur
Anpassung von Flächenmit NURBS (nonuniform
rational B-splines) wird daher mit Hilfe der
Schätzung sich überkreuzender Kurven ange-
wendet. Es benötigt näherungsweise nur die
Wurzel aus der Anzahl der Datenpunkte als
unbekannte Parameter. Mit einfachen Beispielen
generierter Messungen und Messungen des La-
serscanners Leica HDS 3000 wird gezeigt, dass
die Anpassung der Freiformflächen mit einer
Genaugkeit erfolgen kann, die die Genauigkeit
der gemessenen Daten approximiert.
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