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Abstract 

In order to support automated decision-making, landscape and urban planning require the 
evaluation of alternative scenarios within the context of geodesign. The evaluation is 
frequently based on indicators, where the decisive ones are typically called key perfor-
mance indicators (KPIs). These KPIs often are related to physical objects (e.g. buildings or 
land parcels) which are stored in geoinformation systems (GIS). Several approaches have 
been introduced for representing KPIs; however, they pose a problem, as stakeholders and 
domain specialists often are not capable, lack sufficient knowledge, or are not willing to 
implement these indicators in the language of the underlying GIS. In this paper we propose 
a framework that assists domain specialists in expressing indicators, indexes, and their 
dependencies using a model-driven approach. We define an object-oriented data model for 
an abstract General Indicator Model (GIM) formally specifying concepts like indicators, 
numeric indicators, and their compositions. Specific indicators/KPIs from different decision 
contexts, for e.g. energetic, environmental, or financial assessments, are then defined as 
concrete subclasses of the GIM. The concrete KPI classes are linked to spatial feature 
classes from digital city and landscape models (like CityGML) using model weaving. This 
effectively sets the object context or reference frame of the individual indicators and 
provides means to automatically derive the values of those indicators from characteristics 
and attributes of the linked spatial objects. We apply this framework to a case study for a 
real scenario in energy demand estimation as a proof of concept for our framework. 
However, the concept can also be used for indicators from other indicator domains to cover 
e.g. environmental and financial aspects of planned scenarios in decision-making as well. 

1 Introduction 

An important aspect of geodesign is the evaluation of alternative scenarios in landscape and 
urban planning which does not only help in decision-making, but also in its automation. 
Evaluations are carried out in different domains like the energy (e.g. energy demand 
estimation) or environmental sector (e.g. noise dispersion, or assessment of greenhouse gas 
emissions). The evaluation is often based on key performance indicators (KPIs). Indicator 
modeling in general refers to KPIs as measures that indicate/assess organizational per-
formance; i.e., it is a metric that evaluates performance with respect to some objective 
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(BARONE et al. 2011), and, thus, measures how far we are from where we want to be 
(SUSTAINABLE MEASURES 2010). It triggers an alert of what needs to be done or what 
action needs to be performed in order to enhance the performance (PARMENTER 2007). 
However, the action to be taken in order to change the current state and improve the per-
formance has to be provided as well, as is e.g. done by SINDRAM & KOLBE (2014) in a com-
plementary concept using a so-called General Action Model. 

Nevertheless, as explained by BARONE et al. (2011), indicators can be also composite, 
consisting of a hierarchy of indicators. In this case, the value of an indicator for an object 
depends on the values of indicators for objects on lower levels of the hierarchy. The 
problem hereby is, that in some cases no well-defined mathematical function exists that 
relates component indicators to a composite one. 

As part of a state-of-the-art analysis we identified diverse approaches for representing 
knowledge about KPIs. WETZSTEIN et al. (2008) introduce a framework for modeling and 
monitoring KPIs in Semantic Business Process Management aiming to minimize the sup-
port needed from the IT staff throughout the business process life cycle. DEL-RÍO-ORTEGA 
et al. (2010) present an ontology for defining process performance indicators (PPIs) en-
abling the analysis of PPIs at design time. Furthermore, the relationships between business 
processes and PPIs are explicitly defined. BARONE et al. (2011) focus on modeling pro-
cesses, indicators, and business objectives related to one another in order to achieve busi-
ness intelligence activities in the Business Intelligence Model context. ROJAS & ZAPATA 
(2013) propose so-called executable pre-conceptual schemas to obtain an appropriate 
knowledge representation of KPIs. 

By taking into account these research concepts we developed a KPI framework which 
comprises major features for an appropriate KPI representation. The framework is defined 
as a generic, easily understandable, and extensible conceptual model. Furthermore, the 
framework follows the ISO 191xx series of geographic information standards and can, thus, 
be employed and implemented for any application in the context of the geospatial domain. 
The paper is organized as follows: In section 2 we introduce the theoretical background for 
our KPI framework. In section 3 we present our proposed KPI framework and apply it to a 
case study in energy demand estimation. Section 4 covers relevant related work and in 
section 5 we present the conclusion and some future work. 

2 Theoretical Background 

2.1 Model Driven Engineering 

Model Driven Engineering (MDE) represents a software engineering approach which 
started to develop in the 1980s. MDE allows for creating links between systems using 
Model Weaving (FABRO et al. 2005). To do so, the systems are represented by models 
which conform to metamodels and which can be transformed into other models based on 
the definitions in the weaving models (BEZIVIN et al. 2005). One well-known model-
engineering framework which follows the MDE principles is the Model-Driven Architec-
ture (MDA) developed by the Object Management Group (OMG 2003) (BEZIVIN et al. 
2005). In the context of MDA several standards have been developed; the most important 
one is the modeling language UML (Unified Modeling Language) which is widely em-
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ployed in the geospatial domain for defining models (OMG 2011) and which we will also 
use for our KPI framework. 

Key points for MDE include simplifying the design process and reusing standardized 
models and components. Thus, rather than building the variants of each new system from 
scratch, domain-specific reusable components should be implemented in the domain engi-
neering process (CZARNECKI et al. 2000) as is demonstrated in figure 1. Here, the General 
Indicator Model (GIM) can be considered as such a reusable component which is used as 
basis for defining domain-specific indicator models (e.g. Energy-Related Indicator Model, 
Climate-Related Indicator Model). The individual indicators defined therein can then be 
related to geospatial elements by linking the domain-specific indicator models with geospa-
tial application models (e.g. CityGML). This process of linking these models together is 
called model weaving. 

CityGML is an international standard of the Open Geospatial Consortium (OGC) (GRÖGER 
et al. 2012). CityGML specifies both, an application-independent geospatial information 
model and an XML-based encoding for the representation, storage, and exchange of seman-
tic 3D city and landscape models. CityGML groups geospatial elements into different 
thematic areas such as buildings, vegetation, water, terrain, traffic, tunnels, and bridges; 
furthermore, it represents 3D geometry, 3D topology, semantics and appearance of the 
geospatial elements in five discrete levels of detail (LOD). 

The GIM, the domain-specific indicator models, and the CityGML model can be arranged 
within a hierarchy which is based on the OMG four-layer metamodel hierarchy (OMG 
2011), as is shown in figure 1. The layer M0 represents the objects of the real world, such 
as buildings or land parcels or also the concrete indicator values, in the form of geospatial 
data. The structure of these data objects is described by models, e.g. using UML, which are 
located at layer M1. In figure 1 the domain-specific indicator models for energy and climate 
as well as the CityGML model belong to this layer. At layer M2 reside the metamodels; 
they define the concepts to be used for creating the models at layer M1. The GIM is such a 
metamodel as it defines the concepts on which the domain-specific indicator models are 
based. Similarly, the CityGML model is based on the General Feature Model (see ISO 
19109), which is a metamodel defining how to represent geospatial objects in geospatial 
application models. The fourth layer in this hierarchy is the meta-metamodel layer M3 (not 
depicted in figure 3). At this layer all the elements which can be used to create metamodels 
at the layer M2 are defined. 

2.2 Indicator Modeling 

KPIs as defined by PARMENTER (2010) are sets of measures or metrics that focus on the 
most critical aspects of current and future success of an organization. Different indicators 
have been suggested according to studies made by authors like GALLOPIN (1997), 
BLANCHET & NOVEMBER (1998), and BOTH et al. (2003). According to them, the indicator 
shall be able to describe the state of a system, evaluate the state of a system, and measure 
correlations between different indicators or in other words allow for derived measurements 
(CARNEIRO 2011). 



General Indicator Modeling for Decision Support  259 

General 
Feature Model 

ISO 19109

CityGML 
Application 

Schema

General 
Indicator Model

Energy-Related 
Indicator Model

Climate-Related 
Indicator Model

KPI B Building Z

KPI A Building Y
M0: Instance

M1: Model

M2: Metamodel

X Y Z

Fig. 1: General Indicator Model and 
domain-specific indicator mod-
els in the MDE perspective. 
The dashed arrows indicate an 
“is-represented-by” relation-
ship. 

Two of the approaches proposed for allowing the indicator system to support the decision-
making process, is its implementation using the so-called top-down and bottom-up pro-
cesses (MAYSTRE & BOLLINGER 1999). The top-down process starts from the decision-
makers’ side. It simply asks the question what has to be evaluated and then breaks up this 
comprehensive and generic question into descriptive data. On the contrary, the bottom-up 
process is carried out by organizing data, aggregating them into indicators, and selecting 
relevant indicators (CARNEIRO 2011). When an indicator is related to a geolocation or to a 
specific territory, it is referred to as a geographical indicator. In other words, a geographical 
indicator connects an observation to a spatial or a geo-referenced object (CARNEIRO 2011). 

2.3 The Impact of Indicator Modeling on Landscape Architecture 

“The design method” (SIMON 1969) does not exist, Herbert Simon a political scientist and 
economist stated. Since there is not one single design method, there is not one single 
geodesign method or path (STEINITZ 2012). According to Jack Dangermond (WHEELER 
2012), Geodesign shall be “thought of as a systematic process of measuring, modeling, 
interpreting, designing, evaluating, and making decisions”. Hence, in order to support auto-
mated decision-making, the evaluation of different geodesign methods became a necessity. 
In this paper we focus on the development of a KPI framework which can be used to 
support the evaluation of geodesign methods for landscape and urban planning. Steinitz’s 
study in his book “A Framework for Geodesign: Changing Geography by Design” pointed 
out, that architects, designers, and scientists count on models, which are abstractions of the 
real world, modeled from their individual perspectives. Evaluation and assessment of these 
models is to be considered from the basic usages during the geodesign process by using 
indicators for determining, monitoring, and detecting the impact of a specified change on a 
given model (STEINITZ 2012). In a case study conducted by Steinitz back in 1967 for rap-
idly changing suburban areas, the necessity of the evaluation of attracttiveness or vulner-
ability for each land use in the future was demonstrated. It was also used for determining 
and measuring the impact of any specific change (STEINITZ 2012). 
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3 Spatial Object-Related Indicator Modeling 

Based on our state-of-the-art analysis, we defined major factors for expressing represent-
tative indicators. Thus, a comprehensive KPI model is required which covers the following 
features: i) clear and accurate semantics with indicators related to one another; ii) a formal 
language with clear and accurate syntax for describing the indicators; iii) extensiveness 
when indicators are intended to be present in different application schemas within different 
domains; iv) data sources and accuracy for ensuring data reliability; v) a link between the 
KPI model class entities and class entities from relevant ISO191xx standards; vi) the 
representation of time-dependence as indicators can be time-dependent; and vii) features for 
aggregation metric, duration metric, passive and active monitoring, and stakeholders’ 
understanding (WETZSTEIN et al. 2008; BARONE et al. 2011; DEL-RÍO-ORTEGA et al. 2010; 
ROJAS & ZAPATA 2013; CAPUTO et al. 2010; FRANK et al. 2008; FOX 2013; POPOVA & 
SHARPANSKYKH  2010). 

3.1 The General Indicator Model 

In order to achieve an appropriate knowledge representation of KPIs we propose a frame-
work, the so-called General Indicator Model (GIM), which allows expressing elementary 
indicators, complex indicators, and indexes. Elementary indicators are realized/derived 
directly from raw data, while complex indicators consist of two or more indicators (ele-
mentary or complex) and consistently show complex functions on the elementary data 
(CARNEIRO 2011). Indexes are an aggregation of elementary or complex indicators or a 
combination of both and represent simple functions for different areas of application. The 
higher level of aggregation represented in indexes supports the decision-making process 
because of the simplicity and comprehensiveness which makes them easier communicable 
to the public (CARNEIRO 2011). Indicators and indexes shall encapsulate, simplify, assess, 
and measure related information which require an underlying metric of their values, e.g. 
integer or real values, or a reference to such values, and usually a unit of measure (KRÜGER 
& KOLBE 2012).  

The GIM is represented in figure 2 as a UML class diagram; this makes it easily readable 
and understandable as well as extensible with constraints formulated in the Object Con-
straint Language (OCL). Furthermore, the model follows the ISO 191xx series of geogra-
phic information standards which enables its linkage to the General Feature Model defined 
in ISO 19109 and allows for diverse applications in the geospatial domain. 

The abstract class Indicator is the base class of the GIM. It defines the attributes which are 
common to all indicators. This indicator class is specialized to the three abstract subclasses 
TextIndicator, NumericIndicator, and ClassifierIndicator. TextIndicator represents indica-
tors as arbitrary text, whereas ClassifierIndicator is used for categorizing indicators in the 
form of discrete values. Our focus in this paper is on NumericIndicator, which represents 
indicators resulting in real values. NumericIndicator is further specialized to the classes 
ArithmeticOperation, NumericConstant, NumericAttribute, and NumericAggregationOper-
ation, which is an aggregation of other indicators or values. NumericAttribute represents 
attribute values through a relation to geospatial elements in geospatial application models 
using the referenceToObject attribute. ArithmeticOperation represents indicators that result 
from mathematical formulas; it is classified into UnaryArithmeticOperation and Binary-
ArithmeticOperation. UnaryArithmeticOperation comprises formulas which require only 
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one operand and takes its operator from the UnaryOperation enumeration, while Binary-
ArithmeticOperation represents indicators consisting of two operands taking its operators 
from the enumeration BinaryOperation. 

ArithmeticOperation

TextIndicator

BinaryArithmeticOperation

+ operation  :BinaryOperation

ClassifierIndicator

Indicator

+ name  :CharacterString
+ value  :IndicatorValueType

NumericAggregationOperation

+ operation  :AggregationOperation

NumericAttribute

+ referenceToObjectAttribute  :URI
+ source  :CharacterString

NumericConstant

+ source  :CharacterString

NumericIndicator

+ accuracy  :Real [0..1]
+ unit  :UnitOfMeasure
+ value  :Real

UnaryArithmeticOperation

+ operation  :UnaryOperation

«enumeration»
AggregationOperation

 sum
 avg
 min
 max
 count

«enumeration»
BinaryOperation

 add
 sub
 mult
 div

«enumeration»
UnaryOperation

 sin
 cos
 neg
 abs
 factorial
 sqrt
 tan

operand1

operand2

operand1..*

operand

 

Fig. 2:  The General Indicator Model in UML. Names of abstract classes are in italics. 

The GIM comprises several of the major features introduced above which allow it to i) 
augment numeric values with accuracy information to specify the reliability of the data 
measured, which in figure 2 is represented as an attribute of the abstract class NumericIndi-
cator; this also allows for providing the capabilities for automatic sensitivity analysis which 
depends on the data accuracy and the computation function; ii) track the data sources, 
which are provided by attributes in the NumericConstant and NumericAttribute classes, as 
they allow for verifying the indicator's credibility by storing information about the indi-
cators' origin; iii) compose complex indicators using attribute values from a linked digital 
city or landscape model, constants (NumericConstant class), and mathematical formulas 
(unary/binary arithmetic operations); and iv) model aggregations (e.g. summation, average, 
maximum, etc.) with other indicators, constants or attributes through the NumericAg-
gregationOperation class which allows the representation of indexes. The GIM is defined to 
be extensible and domain-independent; hence, domain indicator models for different do-
mains can be defined having a generalization relation to the classes of the GIM. Domain-



M. Elfouly, T. Kutzner and T. H. Kolbe 262

specific indicator classes (e.g. heat energy demand, population change or CO2 emission) 
can then be defined as specialization of the GIM inheriting the attributes and methods from 
the abstract indicator classes. This will be explained in more detail in the next section. 

3.2 Application of the General Indicator Model to a Case Study 

In this section we describe how the GIM framework can be used for automated decision-
making. In Figure 3 we apply the GIM to a heat energy demand estimation use case in 
addition to a population growth use case as an example from another domain. In the heat 
energy demand use case, the buildings of a certain district are to be retrofitted. It is to be 
evaluated whether after retrofitting the energy demand of the district can be met by using a 
combined heat and power plant. Thus, we need two important indicators: an indicator 
representing the heat energy demand for each building before and after retrofitting and an 
indicator which sums up the energy demand of all buildings within the district. In this way 
it can be evaluated, if the combined heat and power plant can cover the heat energy demand 
required by the district. 

In domain A, the object-related domain indicators BuildingHeatEnergyDemand and Dis-
trictHeatEnergyDemand, which is an aggregation of the former ones, inherit from the 
domain indicator HeatDemand. The same concept applies to domain B. The domain indi-
cators for HeatDemand and Population, in turn, inherit from the NumericIndicator which is 
defined in the GIM. As mentioned in section 2.1, this makes the GIM a reusable component 
following the MDE approach. Furthermore, an association is established between the 
object-related domain indicators and the reference objects District and Building. Thus, 
figure 3 represents abstract GIM classes, concrete indicators from different application 
domains, object-related indicators, and reference objects which the indicators are related to.  

Heat
Demand

Building

DistricHeatEnergy
Demand

PopulationNumericIndicator

BuildingHeatEnergy
Demand

DistrictPopulation

BuildingPopulation

District

Object Related 
Domain Indicators

Object Related 
Domain Indicators

General Indicator ModelIndicator Model for Domain A Indicator Model for Domain B

Reference Objects

Domain Indicators Domain Indicators

 

Fig. 3: Indicator Data Model linkage for different application domains 



General Indicator Modeling for Decision Support  263 

Figure 4 gives a more detailed view of our approach specifically for the heat energy de-
mand estimation use case. The geospatial application model, representing the geographical 
context, and the domain indicators are related explicitly using the concept of model weav-
ing. In our use case, the domain indicator HeatDemand, which is derived from Numeric-
Indicator, is specialized to the object-related domain indicators DistrictHeatEnergyDemand 
and BuildingHeatEnergyDemand, which are then linked to the reference objects District 
and Building, respectively. The reference objects, in turn, are linked to the classes Building 
and CityObjectGroup of the geospatial application model (here: CityGML) via the weaving 
classes BuildingConnector and DistrictConnector, respectively. The value of the indicator 
is calculated in the compute() method. The computation algorithm of the method is defined 
using the Object Constraint Language (OCL). For our use case the heat demand for a 
specific instance of the class Building is computed. OCL rule 1 defines the algorithm for 
computing the building volume by linking the building object of the geospatial application 
model with the corresponding reference object. Afterwards, the algorithm provided by OCL 
rule 2 is used to compute the heat energy demand of the building and store the result in the 
value attribute of the BuildingHeatEnergyDemand indicator class, which is inherited from 
NumericIndicator. 
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Fig. 4: Model Weaving Concept 

Figure 4 furthermore shows that in a real-life scenario there could be on the one side a city 
modeler who raises the question regarding what to do with the generated geodata and on the 
other side an energy planner who requires geodata for a specific evaluation task. The city 
modeler belongs to the domain of the geodata provider, while the energy planner belongs to 
the domain of the stakeholder/application specialist. The weaving classes fill the gap 
between these two domains and enable sharing and enrichment of geodata/information. 
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Figure 5 illustrates another important feature of the model weaving concept. The object-
related indicators of domain A and B, as explained in context of figure 3, are connected 
through the reference object classes to the desired geospatial application models (e.g. 
CityGML, INSPIRE or Building Information Modeling (BIM)/Industry Foundation Classes 
(IFC)) via the corresponding weaving classes. This concept of separation allows the re-
presentation of the same type of indicator models and reference classes in conjunction with 
different geospatial data model sources. However, it has to be noted, that it depends on the 
structure and information richness of the used geospatial application model to which extent 
the indicator values can be taken, derived, or computed from the linked geospatial feature 
classes.  

Reference 
Object Classes

Weaving 
Classes 1

Weaving 
Classes 2

Weaving 
Classes 3

CityGML

INSPIRE

BIM / IFC

Object Related 
Indicators 
Domain A

Object Related 
Indicators 
Domain B

General 
Indicator Model

 

Fig. 5: Weaving Classes between different geospatial application models and the General 
Indicator Model 

4 Related Work 

Several approaches for KPI representation that cover some of the previously established 
dimensions exist. WETZSTEIN et al. (2008) defined a KPI ontology for measuring perfor-
mance of business processes. The main focus of their research is on KPIs for business 
processes and how to fill the gap between the business and IT views of business processes 
which encounter considerable difficulties. They also presented instance metrics, aggregate 
metrics as well as allowing the calculation of the duration between activities. However, the 
proposed ontology is domain-specific, covering business aspects; possible relations to 
geospatial applications have not been investigated. Furthermore, the KPI ontology presen-
ted does not define derived measures. 

DEL-RÍO-ORTEGA et al. (2010) presented another work that is close to WETZSTEIN et al.’s 
work. They developed a process performance indicator ontology defining the relationship 
between the indicators and the elements defined in the business process life cycle from its 
design to its evaluation. In addition to that, time measure was also introduced which can be 
used for computing the duration of a certain process. Count measure, which is the number 
of times that something happens, base, derived and aggregated measures were also covered 
in this work. It is possible to extend the presented ontology, since it is built upon a formal 
basis. The ontology is represented using UML, yet the presented indicator model is not 
related to the geospatial domain. 
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ZAPATA et al. (2011) used so-called executable pre-conceptual schemas for prescribing 
convenient knowledge representation of KPIs. Pre-conceptual schemas are shown to be 
useful as an intermediate step between natural language discourse and UML diagrams. 
They allow for graphically depicted information in a way that everyone can understand the 
information they describe (ZAPATA et al. 2011).  Nevertheless, pre-conceptual schemas do 
not specify in detail the different operations or procedures carried out within the domain, 
because they only refer to the interaction among participants and objects. In other words, 
this information is not completely clear to the stakeholder, because it reflects the problem 
structure instead of its functionality. The presented indicator model is not related to the 
geospatial domain. Moreover, it is not clear if they support sophisticated mathematical 
calculations, aggregated measures and derived measures, or not. 

The above research studies focus on the sectors business, economics, and health and do not 
apply their work to landscape modelling or the geodesign domain in general. Not all of 
these research studies represent a data model using a formal modelling language. Also a 
possible relation to the geospatial domain has not been investigated by them so far.  

5 Conclusion and Future Work 

Within this paper, we introduced a framework for representing KPIs and demonstrated how 
to apply this framework to the modelling of specific domain indicators. This is a prerequi-
site for evaluating alternative scenarios in the context of geodesign. Key aspects for the 
credibility, reliability, tractability, and accuracy of indicators have been introduced and 
have been taken into account in the framework development process. Moreover, the 
framework can be linked to geospatial application models which follow the ISO 191xx 
series of geographic information standards allowing for its diverse utilization in the geo-
spatial context. Above that, by representing individual indicators as objects we make them 
first class objects and also make them linkable in this way. Hence, we can model and 
implement relations between geospatial objects and individual indicators. This is different 
from previous approaches in GIS where indicators often are represented by attributes of 
geospatial objects. Thus, in the traditional model we can link to the geospatial object but 
not to their individual attributes. 

Furthermore, a model weaving concept was presented which allows for i) automatically 
deriving the KPI values from attributes of the geospatial application model and other KPIs 
– depending on the data available in the geospatial application model, and ii) the enrich-
ment of the geospatial application model by the indicators and indexes. The geospatial 
application model used in the examples is the international OGC standard CityGML which 
enables full coverage of city objects of the entire urban area, including geometry, prop-
erties, and the topology of buildings (KRÜGER & KOLBE 2012). It facilitates the commu-
nication between stakeholders involved in the usage of KPIs (ROJAS & ZAPATA 2013). 

Several future research aspects can be identified for the development of indicator modeling. 
Our next step will be the implementation of our GIM framework, which includes the 
automatic derivation of computation programs/scripts for the indicators based on the UML 
and OCL models. Our other future work will focus on dynamic indicator modeling as 
indicator values can change over time and also error propagation is to be further investi-
gated. Moreover, different geospatial application schemas have to be tested for their 
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compatibility with the GIM and the ability to sustain extensive sophisticated calculations. 
In parallel to the GIM a complementary concept is developed dealing with urban planning 
actions. This so-called General Action Model allows for representing complex transactions 
on geospatial application models (SINDRAM & KOLBE 2014). By linking the GIM with this 
General Action Model, actions have a direct impact on the indicators, allowing for as-
sessing the impact by using the indicator model. 
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