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Abstract 

This study investigates the combination of images by both radar and optical sensors for 
environmental modelling in dynamic landscapes. The study area is located in Eastern Ken-
ya and contains three of the largest refugee camps in the world. The fast provision of reli-
able information about the environmental conditions is needed by humanitarian organiza-
tions in order to coordinate their work and help the displaced people. We conducted a land 
cover classification based on RapidEye, Sentinel-1 and SRTM data using a Random Forest 
approach. Different combinations of input data were compared in order to achieve best 
results. The output accuracy was 84 % based on 17 predictor layers. These were generated 
using second order SAR texture filters and multi-scale topographic indices. Especially a 
combination of all three input types led to promising results. 

1 Introduction 

Political instabilities, terrorism, poverty, harsh climatic conditions and natural disasters 
force people to migrate throughout all parts of the world. The United Nations High Com-
missioner for Refugees (UNHCR) counted over 50 million forcibly displaced people at the 
end of 2013 (UNHCR 20141). Many of those people gather in refugee camps, which often 
arise spontaneously and without central control. Humanitarian operations therefore often 
struggle with the organization of the camp life and their lack of important information. 
Short-term needs are information on population numbers and camp structure, as well as the 
distribution of ground water around the refugee camps. In addition, information about the 
environment and the impacts of the refugee camps on the surrounding resources is critical 
to both the teams working in the camps (FÜREDER et al. 2014) and regarding the prevention 
of further migrations (HAGENLOCHER 2011).  

Especially in regions where field work is not possible, satellite remote sensing is an im-
portant source for fast and reliable information. It can be used for the coordination of help 
and the assistance for decision-making in order to grant long-term well-being of both the 
people and the whole region. Our study addresses essential topics for the implementation in 
humanitarian operations:  

Operationalization: Only if the method can be utilized in at least a semi-automated way and 
within a short time it can provide valuable information in the case of emergency.  
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Transferability: Refugee camps are distributed all over the world. The developed method 
should not be limited to particular climates or ecosystems.  

Data availability: Although this should not be a criterion in the case of emergency, we 
intended the utilization of freely available datasets and software. In terms of optical data we 
chose a sensor with high temporal and spatial coverage.  

Our study therefore investigates how data can be integrated in a workflow which fulfills the 
criteria mentioned above. Furthermore, we try to answer the question, which types of data 
contribute to successful analyses. As many refugee camps lie within regions with different 
climatic conditions, we additionally explore the benefit of synthetic aperture radar (SAR) 
data, which penetrates the atmosphere without significant distortions. 

2 Study Area and Input Data 

Our study area (see figure 1) is the region around the refugee camps Dagahaley and Ifo in 
the North Eastern Province of Kenya. The camps are located around 70 km from the coun-
try border. Together with the refugee camps Hagadera and Kambioos, the Dadaab region 
hosts a total number of 340.000 refugees, mainly from Somalia, in over 80.000 households 
(UNHCR 20142). Environmental assessments are important to monitor the changes linked 
to the camps, which have been established since the civil wars in Somalia in 1991. The 
climate is semi-arid with two rainy seasons around April and November. The overall pre-
cipitation is about 375 mm per year. At the time of image acquisition (dry season, see Table 
1), green vegetation cover is limited to shrubs and trees which show considerable activity, 
while remaining areas are brown and mostly free of grass. 

 

 

Fig. 1:  Location of the study area, refugee camps in the Dadaab region and extents of S1 
and RE images. Background: Landsat 8 panchromatic image © USGS 
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The datasets used in this study are displayed in Table 1. Sentinel-1 (S1) is a C band radar 
satellite, which was launched within the Copernicus program by the European Space Agen-
cy (ESA) in April 2014 (TORRES et al. 2014). The data was purchased as a Level-1 product 
in Interferometric Wide Swath mode (IW), calibrated to Sigma Naught (σ0

db) and terrain 
corrected using a range-Doppler algorithm (LOEW & MAUSER 2007) and a digital elevation 
model (DEM). In order to preserve the original image textures, no speckle removal was 
applied. In texture-based classifications the accuracy has been observed to decrease when 
speckle filtering was applied before classification (PRASAD & GUPTA 1998, COLLINS et al. 
2000). In contrast to L band radar such as ALOS, C band sensors are more sensitive to 
leaves and small branches, and have a lower penetration depth.  

RapidEye (RE) data was purchased as a Level-1 product, orthorectified and atmospherically 
corrected. The cloud cover of the image is 0%. As shown in Table 1, both images are ac-
quired on the same day granting an optimal phenological comparability. According to 
TAMSAT data (TARNAVSKY et al. 2014), no rainfall has taken place within the 14 days 
before the image acquisition. This indicates that the rainy season has already ceased at this 
time. The radar backscatter of S1 data was therefore not influenced by soil moisture, but 
predominantly by surface roughness and the water content of plants.  

The SRTM 1 ArcSecond digital elevation model (DEM) was released in September 2014 
with a spatial resolution of 30 meters (NASA 2014). No further processing was required.  

These different sources of information are the basis for using machine learning techniques. 
As they commonly use a large feature space, several texture parameters have been applied 
to the SAR image, and a multi-scale terrain analysis has been performed on the DEM (see 
next chapter).  

Table 1: Datasets used in this study 

Data Description, spatial resolution Date Copyright (Source), Year 

Sentinel-1 VV and VH polarization, 10 m 27.12.2014 ESA (SentHub) 2014 

RapidEye Level-1B product, 5 bands, 5 m  27.12.2014 BlackBridge AG (EyeFind) 2014 

SRTM 1 ArcSecond, 30 m ‒ USGS (EarthExplorer) 2014 

3 Data Integration and Analysis 

3.1 Predictor Space Creation 

Classifications based on machine learning techniques are most efficient when a large fea-
ture space can be utilized for training and classification. Initially, we had eight layers of 
information, consisting of two S1 layers (VV and VH polarization), five bands of RapidEye 
(blue, green, red, red edge, near infrared) and one SRTM layer (elevation in meters). Ex-
perimental classifications based on these few layers alone resulted in low accuracies. Addi-
tionally, they all cover information based on their spatial resolution alone. In order to utilize 
the texture information of surfaces, which is revealed within the SAR and the terrain infor-
mation from SRTM data, we calculated additional input layers for the classification at vari-
ous scales as described in the following.  
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3.1.1 Sentinel-1 

S1 data is currently provided in Interferometric Wide Swath mode (IW), with two (VV/VH) 
polarizations available. We used co-occurrence probabilities, also called Grey Level Co-
occurrence matrix (GLCM), defined as “a two dimensional histogram of gray levels for a 
pair of pixels, which are fixed by a spatial relationship” (HARALICK et al. 1973). It is an 
acknowledged method to retrieve second order texture information. Orientations of 0°, 45°, 
90° and 135° were used and the pixel offset was set to 1. The following parameters were 
calculated using the scikit-image library (VAN DER WALT et al. 2014): Contrast, Corre-
lation, Energy, and Heterogeneity. This increased our feature space based on S1 by the 
factor 4. However, we additionally used different window sizes for each texture. As studies 
have shown that especially small structures exhibit valuable textures for classification 
(COLLINS et al. 2000), we chose 3, 5 and 9 pixels as window sizes. This resulted in a total 
of 12 texture parameters per polarization which could additionally be used for the classi-
fication. As these texture layers are redundant to a certain degree, a principal component 
analysis (PCA) was conducted in order to extract the most valuable variation in the SAR 
images. Therefore, the 26 SAR parameters (1 raw image + 12 textures for each of the two 
polarizations), were reduced to 7 principal components. A comparison of calculations based 
on all parameters with ones based on only 7 principal components showed that – besides 
the reduction of input data and computing capacity – there is no significant decrease in the 
accuracy of the image classification.  

3.1.2 SRTM 30 

A digital terrain analysis was performed on the DEM. By using window sizes of 3, 9 and 45 
pixels, the following parameters have been calculated: elevation, slope, aspect and profile 
curvature. This resulted in 12 additional raster layers for the classification. We experimen-
tally performed a PCA on all SRTM layers as well, but the terrain parameters of smaller 
window sizes predominantly hindered the creation of homogeneous areas and led to lower 
classification accuracies. Therefore we excluded those layers from our final calculations. 

We did not perform any texture calculations based on the optical images because it turned 
out to have enough variation to explain landscape patterns. As demonstrated in Table 2, a 
total of 24 input layers were available as predictor variables for the classification. 

Table 2: Datasets used in this study 

Data Layers Count of  Predictor Rasters 

Sentinel-1  7 principal components of 26 texture layers 7 

RapidEye blue, green, red, red edge, near infra-red 5 

SRTM 4 terrain parameters with 3 different window sizes 12 

   24 

3.2 Classification 

Machine learning techniques help to detect patterns within ordinal data for a later classi-
fication of untrained data according to these detected patterns (ZHANG 2015). In order to 
make the best use of the radar, optical, and terrain information, we chose a Random Forest 
(RF) classifier (BREIMAN et al. 2001). It creates a large number of different and uncorrela-
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ted classification and regression trees (CART, BREIMAN et al. 1984). By randomly choosing 
a subset of training samples and features for the training, the best ruleset is determined, 
which best splits the feature space into parts, which explain the output attribution of classes. 
The outputs of every CART are then summed up to a final prediction, in our case a code for 
land use.  

This method has several advantages: (a) although the output map is always a combination 
of all input layers used, the input data can be of different spatial resolution; (b) different 
kinds of data can be combined because varying pixel value ranges are allowed, while this 
can cause problems in other pixel-based methods such as the Maximum Likelihood classi-
fier (FOODY et al. 1992); (c) the landscapes underlie large seasonal dynamics with object 
dynamics difficult to grasp, whereby a pixel-based approach seems to be appropriate; (d) 
areas with ambiguous information can be addressed because SAR and optical data are of 
complementary use for the classification of African landscapes (DEROIN et al. 1998).  

For the output generation we chose the Land Cover Classification System (LCCS) suggest-
ed by the FAO (DI GREGORIO 2005). It is scale-independent, standardized, and widely 
approved for mapping purposes. Table 3 lists the classes used for our study area.  

Table 3: 10 Land use classes according to the LCC 

LCC Code LCC Label Remarks 

8002-1 Perennial Natural Waterbodies (Flowing) River 

8003-1 Non-Perennial Natural Waterbodies (Flowing) River bed 

40011-1 Open Shrubs Floodplain 

5002-4 Paved Roads Only few 

5002-5 Unpaved Roads Most of the paths 

5003-14 Medium Density Urban Areas Refugee camps 

6005-6 Stony Bare Soil Or Other Unconsolidated Materials Mostly around camps 

20055 Sparse Shrubs  Coverage < 15 % 

20017 Open Shrubs (Shrubland) Coverage 15 ‒ 65 % 

20021 Closed Shrubland (Thicket) Coverage > 65 % 

In order to train the RF classifier, we manually digitized 150 to 400 random points per class 
evenly distributed over the study area. In total we used 2500 points for training purposes 
and additional 500 (30 to 70 per class, depending on their spatial occurrence) for the valida-
tion of the result.  

3.3 Workflow 

Figure 2 shows the workflow of our analysis as described in the previous chapters. A subset 
of the total input data from Sentinel-1 (aggregated into 7 principal components), RapidEye 
and SRTM was chosen and used to train the classifier. In contrast to simple classification 
trees, Random Forests do not tend to over-fit the training data, so training accuracies be-
tween 40 and 80 % were achieved (see figure 3, dashed line). These were calculated based 
on the output map and the 2,500 training points it was based on. Additionally, each predic-
tor rasters’ importance for the classifier was calculated in order to systematically determine 
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the most relevant inputs (see chapter 4). Each subset’s classification was validated by the 
500 sample points and mapping accuracies were determined. By this we identified the 
highest possible accuracy. 

 

Fig. 2:  Workflow for our study. Note the loop between selection of the predictor rasters 
and image classification to identify the highest classification accuracy.   

4 Results and Discussion 

Table 4: Distribution of classes and User’s/Producer’s and Accuracies of the result. 

LCC Label Coverage UA PA 

Perennial Natural Waterbodies (Flowing) 1,4 % 86,0 % 100,0 % 

Non-Perennial Natural Waterbodies (Flowing) 10,2 % 97,7 % 86,0 % 

Open Shrubs 18,6 % 56,3 % 90,0 %  

Paved Roads 0,2 % 100,0 % 100,0 % 

Unpaved Roads 1,6 % 93,9 % 62,0 % 

Medium Density Urban Areas 3,8 % 97,9 % 92,0 % 

Stony Bare Soil Or Other Unconsolidated Materials 7,6 % 97,9 % 97,9 % 

Sparse Shrubs  14,9 % 80,0 % 48,0 % 

Open Shrubs (Shrubland) 15,3 % 71,4 % 68,6 % 

Closed Shrubland (Thicket) 26,5 % 80,0 % 96,0 % 

The best result has been achieved with the following input layers: 5 RapidEye bands, 7 S1 
PCA bands and 5 SRTM layers. In contrast to the S1 layers, SRTM data clearly showed 
higher importance of the layers with a window size of 45 pixels. Computing 500 Trees 
resulted in a training accuracy of 77.4% and an overall classification accuracy of 83.9%. 
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Figure 3 demonstrates the stepwise increase of the accuracy by selecting the most important 
parameters. 

Figure 4 shows the final map. Table 4 shows that the classes Non-Perennial Natural Water-
bodies, Paved Roads, Medium Density Urban Areas (= refugee camps) and Bare Soil reveal 
the highest user accuracies, while Open Shrubs (both on the floodplain and as shrubland) 
were more critical to identify by the input data and the RF algorithm. Regarding producer’s 
accuracy, Perennial Natural Waterbodies and Paved Roads show good results, whereas 
Unpaved Roads and again classes related to sparse shrub vegetation were of comparatively 
low accuracy. Altogether, the high accuracies of classes with a high spatial coverage led to 
a satisfactory overall accuracy of 83,9 %.  

 
Fig. 3:  Accuracies of the trained RF classifier (dashed line) and of the final map (solid 

line, left y-axis) for selected combinations of predictor rasters (right y-axis). S1: 
Sentinel-1 PCA Layers, RapidEye: 5 optical bands, SRTM*:  Terrain parameters 
(* The numbers indicate different window sizes for the calculation, see chapter 
3.1.2. No number means that all 12 SRTM parameters were used). 

Figure 3 contains some more remarkable results: It can be reported that a higher number of 
input layers (left y-axis) does not necessarily result in better accuracies. As shown by the 
accuracy of roughly 70% explained by the RE data alone, it depends on the information 
content of the predictor layers. First combining optical data with topographic measures and 
SAR information led to high accuracies and homogenous class areas.  

An evaluation of the importance of the different input layers contributing to the creation of 
the RF and the final classification showed the following results: RapidEye 49 %, SRTM 
31% and Sentinel-1 20%. This indicates that optical information is the most important 
source of information. The contribution of topographic measures by the SRTM mainly 
improved the classification of vegetation types at different elevations and landforms. The 
contribution of Sentinel-1 of only 20% seems low at first sight but was essential for a dis-
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crimination of optically similar classes such as the refugee camps and floodplains or all 
types of green vegetation. Furthermore, the combination of RE and S1 showed that even 
training accuracies of 62 % led to high accuracies in the final classification.  

Yet the RF has its weaknesses as well: In contrast to kriging or other geostatistical tech-
niques, it does not take spatial autocorrelation into account. So some small patterns of mis-
classified areas remain as a typical artefact of randomized trees. These could be extin-
guished by a mode filter. Class neighbourhoods and spatial trends are surely important for 
predictions at the landscape scale. Still, as shown in figure 4, the RF still produced large 
homogenous areas.  

 

Fig. 4:  Result of the classification (output resolution: 7 m). The refugee camps are vis-
ible as black areas with white dots. A floodplain with a braided river system 
reaches from NW to NE. Shrubland of different density is located in the North 
and East. Darker tones indicate thicker shrubs. As the road network is only a few 
pixels thick it has been digitized manually for the sake of visibility in the map. 
The patterns in the South are a mosaic of open shrubland, and bare soils caused 
by seasonal flooding of the plain.  

5 Conclusion and Outlook 

This study showed how datasets of different systems, spatial resolutions, and wavelengths, 
can be integrated in order to generate high-resolution classifications of dynamic landscapes. 
Machine learning applications help to find patterns within data, and identify the most valu-
able information for a later classification. The Random Forest algorithm is independent of 
scale, and therefore suitable for the application to heterogeneous input data.  
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This heterogeneity has been proven to be an asset over the use of a single source as an input 
for classification. The overall accuracy of 84 % is satisfying, although some of the classes 
remain difficult to distinguish. While different vegetation cannot be separated by optical 
data, Sentinel-1 data helped to discriminate between vegetation of different density. Still 
high errors of commission remain for unpaved roads (42%) and open shrubland (50%, both 
often confused with bare soil). It is arguable that C band (λ = 3,1 cm) radar is not the opti-
mal wavelength sensitive to biomass. ALOS PALSAR 2 data based on L band (λ = 22,9 
cm) is not available at present, but could be an option for the future. With reference to ele-
vation information we can report that large scale terrain parameters are of clearly higher 
value in our classification. The choice of ten land use classes is quite ambitious but required 
considering the present dynamics. Surely, reducing the overall classes to six or seven could 
increase the classification accuracy up to over 90 %.  

The study showed the potential of combined input data for the improvement and support of 
environmental monitoring. Especially in areas around refugee camps, the development of 
available biomass and the degradation of soils are of great importance. The use of SAR 
supports the classification in regions where cloud cover potentially disturbs the interpreta-
tion of conventional images. In future studies, we will apply the trained classifier on newly 
obtained data. As all data are calibrated, change detection is possible. Combinations of 
RapidEye and Sentinel-1 are still rare, will this will change in the near future when the 
latter reaches its full operability.  
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