
 140

The Implementation of  
Autocorrelation-Based Regioclassification  

in ArcMap Using ArcObjects 

Christoph MAYRHOFER 

Abstract 

Conventional methods for cartographic classification are often solely based on underlying 
attributive values. There are numerous algorithms to determine the resulting classes, such 
as Jenks Optimal classification, but they still do not account for the spatial patterns that are 
inherent to spatial data. This can cause a visual disruption of areas that would normally be 
considered a cluster, thus making the overall message of a map harder to grasp. With a 
method called “Autocorrelation-Based Regioclassification”. TRAUN & LOIDL (2012) 
introduced an alternative approach that takes spatial properties into account and classifies 
data values in respect to their statistical and spatial properties. This paper builds upon their 
method and shows how their approach has been implemented in ArcMap as an Add-In. 
Additionally, some improvements to the original method are described as well as a method 
that allows the representation of overlapping classes, which result from the spatial 
classification. 

1 Introduction 

Conventional classification methods that assign polygons to a certain class by their data 
value often result in visually fragmented maps. In order to produce logically consistent 
maps that allow identifying the general patterns of spatial data, it is beneficial to have 
contiguous polygons of very similar values to be within a common class. This results in 
rather compact objects (visual clusters). The crisp class boundaries of attributive 
classifications however, do not account for spatial proximity. Therefore, it is possible that 
the map representation of a “statistical cluster” with adjacent polygons that have values 
close to a class break will be very fragmented and does not result in a visual cluster. 

Autocorrelation-Based Regioclassification reduces this problem since it also accounts for 
the spatial distribution of data values. Polygons that are adjacent and have similar values, 
but are yet in different classes will be adjusted by this method to be within a common visual 
class. This method is only applicable to choropleth maps with metric data and can be used 
to emphasize the general patterns of spatial data. The reduction of visual complexity avoids 
excessively fragmented patterns and thereby improves the interpretability of maps. 

This section briefly describes the method introduced by TRAUN & LOIDL (2012): 
In addition to the attributive component, which is normally used to classify data, they 
include a spatial component. The amount of spatial autocorrelation (i.e. the statistical 
relation of values and their neighboring values) is used to determine the degree to which the 
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spatial component should influence the classification process. If the dataset is characterized 
by values that are generally surrounded by similar values, it inherits a high spatial 
autocorrelation and the spatial component will be weighted stronger. If the values in the 
dataset are distributed completely arbitrarily in a spatial sense, the classification will be 
solely based on the attributive values as it would be with a conventional classification 
method. The approach is self-calibrating, since the weighting between the spatial and 
attributive components is directly derived from the data itself.  

The statistical measure that is used to determine the spatial autocorrelation is called 
Moran’s I and will be thoroughly explained in section 3.1. This measure can be calculated 
for each feature and will then be called Local Moran’s I. The mean of all these values is 
defined as the Global Moran’s I, which is equivalent to the regression line of coordinate 
points that are defined by the local value as the x-axis and the mean of the surrounding 
values as the y-axis. Fig. 1 shows a Scatterplot with the mentioned setup. The slope of the 
thick dashed diagonal line represents the Global Moran’s I. The vertical dotted lines 
represent the class breaks of a conventional, non-spatial classification. 

The data points will now be orthogonally projected on the regression line as described in 
section 3.2 and the resulting frequency distribution on the regression line is used to obtain 
the spatial classes (diagonal dotted lines). Therefore, all data points that are within one of 
the diagonal class areas will be assigned to the same visual class (= color).  

Example: Point A and B have similar local (own) 
values and are both within the highest class (>53) 
when a non-spatial optimal classification is applied. 
With the spatial approach, A will only be assigned to 
the second highest class (the diagonal line above A is 
the break to the highest class), while B remains in the 
highest class. This is caused by the fact, that B has an 
above average value (local value) which is represented 
by its x-coordinate and is surrounded by other high 
values (neighborhood value), which are averaged to 
define its y-coordinate. A, on the other hand, has a 
high local value, but is surrounded by low neighboring 
values, which results in a class “downgrade” using the 
spatial method. 

Fig. 1 also shows that A will now be in a lower class than B, while other features – even 
with a lower attributive value – remain in, or are upgraded to the highest class. This results 
in overlapping classes, which is a concept that is not yet well established and often even 
opposed by many cartographers who insist on the principle of non-overlapping classes.  

In order to satisfy the need to clearly associate each feature with a distinct value range, 
TRAUN & LOIDL (2012) suggest the addition of another visualization layer for the value 
domain. While the spatially classified colors of the polygons result in a smoother visual 
appearance of the map, small labels indicate the non-overlapping distinct classes that the 
polygon actually belongs to. This method is described in section 3.5. The resulting map of 
this approach is illustrated in Fig.12 at the end of this paper.  

Fig. 1:  Scatterplot 
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2 Methods and Sample Data 

The program has been developed as an ESRI ArcMap Add-In, which allows users to extend 
the functionality of any ArcMap installation with the new classification approach.   

There are three main components involved in the development process:  

 An Integrated Development Environment (IDE): This software is used to write and 
compile the source code. Microsoft Visual Studio 2008 was used for this project.  

 ArcObjects: ESRI provides developers with the “ArcObjects SDK” (Software Develop-
ment Kit). ArcObjects is a collection of components which allow control of all ArcGIS 
functionalities (e.g. attribute manipulation, classification, processing tools). There are 
numerous, well documented interfaces included. The main source of information about 
each of these is the ESRI Online Help (ESRI 2012a). 

 The programming language: The integrated Python environment of ArcMap could not 
be used, since it does not allow advanced user interface customization. (PENNSYLVANIA 

STATE UNIVERSITY 2012). Therefore, it is necessary to switch to a more sophisticated 
programming language that is able to use ArcObjects, such as VB.NET, C++, C# or 
Java. C# was used for this project due to personal preference. 

The same dataset as used in the paper by TRAUN & LOIDL (2012) was used in order to 
directly compare the programmatically created statistics with their results. The dataset 
features the percentage of African American people in 755 counties of the southeast United 
States as reported by the US Census Bureau in 2000. 

3 Application Architecture 

 

Fig. 2:  Module Structure 

The application can be divided into six distinct modules. Fig. 
2 shows the module structure and their dependency. Each 
section of this chapter elaborates on the functionality of one 
of these modules. 

Module A, B and C are exactly implemented as described in 
TRAUN & LOIDL (2012). Module D adds some additional 
statistical analysis as proposed in the discussion and outlook 
section of their paper. 

Module E describes how the new concept of overlapping 
classes can be implemented in ArcMap by using a special 
algorithm in combination with non-overlapping categorical 
classification. Module F illustrates a workaround that allows 
to create complex graphs by using layer stacks. 

3.1 Module A: Statistics 

The first module calculates the local Moran’s I (Ii), which indicates the spatial 
autocorrelation of a local value (i.e. percentage of Afro Americans in a certain county) and 
its neighbors (e.g. all adjacent features). It is defined as (ANSELIN 1995):  
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In order to understand and to implement this equation it can be split into its components: 

2
i is the variance among the values of all counties

excluding the one that the Ii is currently being calculated 
for. As a first step, the variance can be expressed as
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 is the local value expressed in standard deviations and will be represented as “x” in 

all of the following flow charts, such as in Fig. 3 calculates the sum of values in respect to a 
weight matrix. This matrix describes how much each feature (i.e. neighboring county) 
influences the Ii of the currently calculated feature. In case of a first order neighborhood 
(contiguity), each adjacent county will have the same influence assigned in the weight 
matrix, and all other counties will be neglected (weight = 0). j ≠ i assures that the local 
value itself is excluded from this calculation. 
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Fig. 3 shows how the described equations are implemented in the program: 

 
Fig. 3:  Module A 

Note: All fields that mention the word 
value (e.g. Get next Feature Value) refer 
to the value expressed as standard 
deviations and not to the actual number. 
All features (counties) will be looped in 
order to calculate the local Moran’s I. The 
x component of the above equations is 
already known. The neighbors of the 
county will be identified with the help of 
spatial filters. Their values are then used 
to calculate the y component, which is 
finally multiplied with x to determine Ii. 
After the local Moran’s I has been 
calculated for every county, it is possible 
to determine the global Moran’s I, which 
is defined as the mean of all Ii (HARRIS & 

JARVIS 2011). 
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3.2 Module B: Projection 

 
Fig. 4:  Module B 

 

The coordinate points x and y can now be 
projected onto the global regression line 
as shown in Fig. 4: 
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Finally each feature will be assigned an 
index value which reflects its distance 
from the origin along the regression line. 
This is accomplished by using the 
Pythagorean Theorem. 

3.3 Module C: Classification 

This module classifies the original attributive values and the respective index value that is 
derived in module B. The user interface (cp. section 4) allows users to choose from 
different classification methods (e.g. Jenks, quantile, standard deviation). However, Jenks 
Optimal Classification has been chosen as the default since an optimal classification 
method generally produces the best result for multimodal data distributions (JENKS1977). 

 
Fig. 5:  Module C 

Each feature will then be 
assigned a non-spatial class 
which depends on its x value 
and a spatial-class dependent 
upon its i value. Both classes 
are finally combined to a 
hybrid class (e.g. i-class:3, x-
class: 4, hybrid-class: 34).  

In case that there are more than nine classes, leading zeros will be added to avoid 
confusions (e.g. hybrid class 119 could be interpreted as i:11/x:9 or i:1/x:19, but class 0119 
is distinct). 

3.4  Module D: Outlier Detection 

One of the major downturns of the classification approach to this point is the disregard of 
significant outliers. Thus, the visual class of a county with a significantly low value would 
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be upgraded if it is surrounded by other counties with high values. While this result is 
welcome for most features in order to create visually smoother maps, it also reduces the 
important contrast between these significant outliers and their neighbourhood, making it 
harder to spot them. “The basic method described herein is especially useful where the 
main interest lies in the communication of general spatial patterns. It is not the method of 
choice when the map’s objective is to highlight spatial outliers – polygons that differ 
significantly from their neighbors …” (TRAUN & LOIDL 2012, p. 14). They propose to 
include further statistical analysis to identify and exclude the outliers as a measure to solve 
this problem. ArcMap provides a tool that is built upon the work of ANSELIN (1995) on 
cluster and outlier analysis. It can be found in the ArcMap Toolbox (Spatial Statistics Tools 
→ Mapping Clusters → Cluster and Outlier Analysis). The tool is programmed in Python 
and also uses the local Moran’s I. The calculation of this figure as shown in module A 
accounts for the biggest part of the overall processing time. Therefore, the speed of the 
developed program would drastically decrease, if the provided ArcMap tool had been used 
for the outlier detection. Thus, the functionality of the python code was completely 
reprogrammed in C# using the equations provided by ESRI (2012b) and then altered to 
directly use the local Moran’s I values from module A. The method of outlier detection as 
proposed by ANSELIN (1995) classifies features as outliers according to the following 
principles: 

Z-scores are a common measure to determine statistical significance.
They are calculated for the local Moran’s I of each feature and are a
mere representation of the features in standard deviations: 
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The graph in Fig. 6 shows a probability density function (PDF),
which reflects the normal distribution and is defined as: 
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Fig. 6:  Probability density function 

The function can be used to calculate 
the p-value of each county. A p-value 
quantifies the probability that a county 
will lie within a certain value range. 
The z-score of each county is used as 
the x-value. The black area in Fig. 6 
represents the p-value of a county with 
a z-score for the Ii of 1.96. This 
distinct threshold is used since it 
results in a p-value of 0.05 = 5%. This 
is a commonly used level to declare a 
value as statistically significant (HAR-
RIS & JARVIS 2011/EBDON 1985). 

The p-values can be calculated by integrating the 
PDF over the interval defined by z: 
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Unfortunately it is not possible to directly implement integrals in program code, since 
integrals require infinite precision. Integration can be described as the process of dividing 
the area under the function into small rectangles, which are then used to calculate the area. 
The smaller the rectangles are, the more precise the area can be quantified.  

One way to calculate the area programmatically would be to use finite sizes for the 
rectangles and to manually define the number of segments used to approximate the area. 
This approach requires a significant amount of calculation steps when high precision is 
desired. 

ESRI (2012a) states that their spatial outlier tool calculates p-values by “numerical 
approximation”, but they do not reveal which exact method is used to approximate the 
area. There are numerous functions available with varying complexity to result in different 
levels of precision. Since 0.05 has been chosen as the threshold level, an approximation 
with a precision to the third decimal place is sufficient (i.e. max. error of 10–3). 
ABRAMOWITZ & STEGUN (1964) provide several numerical approximations for the PDF. 
Their function 26.2.16 is the least complex (= fastest calculation) and still exceeds the 
necessary precision by a factor of 100. It has therefore been implemented in the code: 
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The p-value can now be used in combination with the local Moran’s I to identify outliers.  
A county will be marked as an outlier if it is characterized by a negative Ii in combination 
with statistical significance (p < 0.05).  
The Ii criterion makes sure that only counties which contrast their neighbours (e.g. low 
value, surrounded by high values) are considered as an outlier. The p-value criterion 
evaluates the statistical significance of that constellation. 

Fig. 7: 
Module D 
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3.5 Module E: Symbols & Legend 

Fig. 8:  Module E 

 

Fig. 9:  Legend 

Since ArcMap is not genuinely designed to support overlapping classes, it is one of the 
major challenges to implement the visualization concept. In order to achieve a satisfactory 
result with the provided tools, it was necessary to develop an algorithm that assigns the 
colors and labels to each feature and class manually:  

Firstly, all features are sorted by their hybrid class. This makes sure that all features with 
the same spatial class are grouped and sorted by their attributive class within these groups. 
Then, all features will be looped and every hybrid class that occurs for the first time will be 
added to the class renderer (the component that later visualizes the features according to 
certain rules). All hybrid classes within the same group (same spatial component) will be 
assigned the same color.  

This results in the class setup as depicted in Fig. 9. Additionally, all classes that overlap are 
supplemented by labels that indicate the difference between the spatial and attributive class 
(e.g. x-class:5, i-class:4 → label: +). This indicates that the value within that spatial (color) 
class would normally be in a higher class. 

3.6  Module F: Graphs 

Additional tools are in need to support the understanding of the underlying methods, since 
this approach is rather new and has not yet been established as a common classification 
concept. According to TRAUN & LOIDL (2012), a scatterplot and a histogram series may be 
used to assist in the visual interpretation of the classification results. Unfortunately, the 
graphing functionality of ArcMap relies strictly on the underlying data. Each object that 
needs to be drawn must be defined by a “data source” (ESRI 2012c). There is no interface 
to define independent objects (e.g. a line that is defined by a function rather than by data 
points). It is necessary to create separate tables as a data source for each object that should 
be drawn in the graph, in order to be able to create more complex graphs such as needed in 
this case. These tables include the class intervals that will later be represented as semi-
transparent polygons, class breaks, which then will be dotted lines and independent objects 
(e.g. coordinate cross, regression line). All these tables are then combined to a layer stack 
when represented in the graph. The result of this workaround is illustrated in Fig. 11.  
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4 Graphical User Interface (GUI) 

A significant amount of the development effort was made to design an intuitive GUI that 
allows users – including those who are not very familiar with the concept of this method – 
to apply spatial classification. 

 
Fig. 10: GUI, Controls 

The controls are separated into two sections. The first
set of controls is used to calculate the statistics and
invokes modules A and D. Since the calculation of
bigger datasets (>1000 features) can take several 
minutes, it is possible to save to the calculated
statistics or to load a previously created statistics file.
The second set of controls (Fig. 10) is used to interact
with the graphs and classification parameters. 

Fig. 11 shows the interface that is used to investigate 
the classification result. The three windows are
displayed simultaneously and the underlying data
values are linked. This allows direct interaction with
the graphs. It is possible to select features on the map
which will then be highlighted in the graphs. The 
same accounts for the selection of features from the
graphs, which will then be highlighted on the map.
This compilation of the three sources of information
supports the interpretation of the resulting maps as
proposed by TRAUN & LOIDL (2012). 

 

 

Fig. 11: GUI Visualization 
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5 Conclusion and Outlook 

The development of this tool has shown that the unconventional approach of spatial 
classification and the idea of overlapping classes can be implemented in a software 
environment (ArcMap) that is not genuinely designed to support these concepts. Spatially 
aware classification has proven to reduce the visual complexity of maps which allows users 
to identify the overall patterns of a map more easily as Fig. 12 demonstrates.   
The classification results are less fragmented than with a non-spatial classification, while 
outliers remain unaltered and become even more apparent due to the increased contrast 
within the overall smoother map appearance.  

 

Fig. 12: Comparison of a non-spatial classification (Jenks) and the classification result of 
the developed tool. Additionally, the bottom right images compare the 
classification with the implemented outlier detection to the original method. 

The improvement compared to a Jenks Optimal Classification can also be quantified by 
MACEACHREN’S (1982) “complexity index for choropleth maps”. This measure represents 
the ratio of polygon edges that serve as class boundaries in respect to the overall number of 
polygon edges. The dataset in this case study consists of 1310 class boundary edges / 2289 
total edges (index = 0.57) when Jenks classification is applied, while only 1105 class 
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boundary edges result from Autocorrelation-Based Regioclassification (index = 0.48).  
The consideration of outlier analysis – as suggested by TRAUN & LOIDL (2012) – could be 
implemented and eliminates one of the major issues of their spatial classification approach.  

However, the outlier analysis only results in a visual exclusion of the concerning features 
from the spatial classification. The values of the features themselves still influence the 
classification of their neighbours. This method has been used in respect to calculation 
speed. Nevertheless, further research needs to be done to evaluate the justification of 
weighting speed over (minor) improvements of the statistical accuracy. 

The tool offers settings to change the concept of neighbourhood and the classification 
method. While the original method uses a first order contiguity in combination with Jenks 
Optimal Classification (which are the default settings), it is now possible to use any other 
combination (e.g. IDW and Equal Interval), which results in derivative classification 
concepts. However, the results of other settings have not been statistically analyzed, which 
is also subject to further research. 
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