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Abstract 

The urban environment is characterised by a variety of different surface materials. For the 
discrimination of urban materials, hyperspectral imaging proved a valuable tool. In this 
study, two methods for classification, Spectral Angle Mapper and Support Vector 
Machines, are compared on a hyperspectral dataset to derive a detailed map of roof 
materials. Spectral similarity of different materials, especially with low reflectance and no 
distinct absorption features can complicate the classification process. Therefore, 
hyperspectral data were supplemented with laser scanning data to not only discriminate 
roof from ground data but also to use roof inclination to distinguish roof spectra. A binary 
roof mask from a laser scanning dataset was used to restrict the classification to roofs only. 
After testing the two classifiers on this reduced dataset, the approach was extended by 
incorporating inclination information in the classification process. Comparison between the 
classified images is done visually and quantitatively using confusion matrices. It can be 
shown that both classifiers are suitable for the classification of roof materials with the 
Spectral Angle Mapper results yielding higher classification accuracies than Support Vector 
Machines.  For both classification approaches, the confusion between several materials was 
reduced by the incorporation of roof inclination, thus improving overall accuracy.  

1 Introduction 

Hyperspectral imaging comprises the measurement and analysis of reflectance spectra 
collected in small, contiguous spectral bands. A range of studies with various applications 
showed the usefulness of hyperspectral data for classification purposes, e.g. urban material 
mapping. In this study, two different pixel-based classifiers, Spectral Angle Mapper (SAM) 
and Support Vector Machines (SVM) are compared to assess their performance in the 
mapping of roof surfaces. In the urban environment, where large variations in illumination 
occur, SAM should be well suited because it has proven to be insensitive to these effects. 
SAM has been used in an urban context, for example to map roof materials on their 
vulnerability for hailstorms (BHASKARAN et al 2001). SVM has been used in land cover 
mapping with hyperspectral and multispectral data and gave better classification results 
than other classifiers (HUANG et al 2002, PAL & MATHER 2004). Supplementing hyper-
spectral data with elevation information to enhance classification by reducing spectral 
confusion between urban land cover types has been successfully employed by MADHOK & 
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A building mask derived from the DSM of the laser scanning dataset was used in this study 
to limit the classification process to roofs only. LEMP & WEIDNER (2005) included 
inclination information of roofs in a segment-based classification process of roof surfaces. 
They proved that the supplemented information led to an improvement of accuracy. Roof 
inclination should therefore be useful in the classification process of roof surfaces that show 
similar reflectance curves and are therefore hard to distinguish. The inclination information 
could help in the classification process if the confused materials occur on differently 
inclined roofs. As a consequence, the study focuses on the following points: Which 
classification method gives better results in the mapping of roof surfaces? Can the 
incorporation of roof inclination improve the accuracy of the classification results? 

2 Study Area and Data 

The study area is the main campus of the KIT (Karlsruhe Institute of Technology) in the 
city of Karlsruhe, Germany. The area is approximately 1km × 0.6km in size containing a 
mixture of roof materials of various ages and conditions. The buildings of the campus area 
are framed by residential buildings in block development (see figure 1). The main materials 
are red roofing tile and slate on residential-like houses, gravel and stone slab on flat roofs, 
as well as various metals on industrial-like buildings. Advantageous to the study is the fact 
that the buildings on the campus are usually larger than residential buildings; this means 
that the larger the roofs, the more pure pixels on a roof can be expected.  

Hyperspectral data from the HyMap sensor were acquired from the Institute of 
Photogrammetry and Remote Sensing (IPF) in July 2003 during the HyEurope campaign 
organised by the DLR (German Aerospace Center). The HyMap sensor is an airborne 
spectrometer which consists of 128 bands in a nearly contiguous wavelength spectrum from 
0.44µm to 2.5µm with a nominal bandwidth of 15-20 nm. The spatial resolution of the 
dataset is 4m × 4m. Pre-processing was undertaken by the DLR, including atmospheric 
correction with ATCOR4, conversion to apparent reflectance and geocorrection of the 
dataset, using the DSM from the laser scanning dataset provided by the IPF. During pre-
processing, two bands were excluded from the dataset resulting in 126 bands.  

The laser scanning data were acquired in March 2002 with the TopoSys II system. The 
generation of the DSM was done using first pulse and last pulse data and converted to 1m × 
1m pixels. A binary building mask was then derived to discriminate buildings and non-
buildings (see figure 2). A second dataset with the inclination of roofs in percent was also 
calculated from the DSM. 

Aerial imagery from spring 2001 was used to gain knowledge about the roof surface 
materials in the study area and to derive correct and representative training areas.  For 
accuracy assessment, a vector reference dataset of the campus roof materials was created, 
displayed in figure 3. The roof materials of about 60 building complexes were determined 
by aerial imagery and field checks. Additionally, reflectance curves of roof materials in the 
image were compared to roof spectra described in literature. 
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Fig. 1: Hyperspectral image of study area 
with main campus (framed) 

Fig. 2: Binary roof mask derived from 
DSM (right); Buildings displa-
yed in white 

 
Fig. 3: Vector reference dataset with roof surface materials 

3 Methodology 

In the following, the methods used in this study are described, from data preparation to the 
classification approaches with SAM and SVM.  

3.1 Data preparation 

The hyperspectral dataset was first investigated for high level of noise in the image bands 
using the homogeneous area method (SMITH & CURRAN 1996). If the noise in the signal 
response is high, the image band will not reliably represent the feature of interest. The 
investigation resulted in the removal of bands 1, 63-66 and 95, leaving 120 bands in the 
dataset.  

After clipping the hyperspectral dataset to the size of the study area, the image was 
resampled to 1m × 1m resolution using nearest-neighbour interpolation. Thus it was 
ensured that the hyperspectral dataset had the same pixel size as the roof mask. Afterwards, 
the roof mask from laser scanning data was applied to the hyperspectral dataset to mask out 



S. Brand 478

all areas that are not building roofs. With this dataset the first classification processes with 
SAM and SVM were undertaken.  

As described above, one task of this study was to analyse whether the incorporation of 
slope information improves the classification results. Two masks of flat roofs and inclined 
roofs from the available slope dataset from the DSM were created. Different definitions 
exist in the literature to determine which angle sets the threshold between flat and inclined 
roofs. As the main task of the roof mask is to distinguish between inclined roofs covered 
with e.g. roofing tiles or slate and flat roofs covered with gravel, stone slab or bitumen, the 
definition of the minimum angle for inclined roofs was taken which states that the lowest 
achievable incline with tile roofs is 11° (WORMUTH et al. 2007). Therefore, the threshold 
between flat and inclined roofs was set to 11° or approximately 18%. Figure 4 displays the 
two final roof inclination masks. Following this, the hyperspectral dataset was clipped with 
the slope masks to provide two datasets for classification where buildings of the opposite 
inclination are excluded. These were used in the classification process with slope 
information. 

Fig. 4: Final masks of flat roofs (left) and inclined roofs (right). Roofs displayed in 
white. 

 

Fig. 5: Overview of roof materials with description of characteristics and geometry 
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As both SAM and SVM are supervised classification methods where the classifier needs to 
be trained, representative training data of the roof materials in the image were derived. For 
the subsequent classification, the same training datasets were used to ensure comparability 
of the results. Training classes were selected for every roof material. Some materials 
required the definition of more classes to fully represent the material in the image due to 
differences in age, colour, weathering and illumination.  

The training classes were extracted from parts of the roofs that were as homogeneous as 
possible, not including chimneys, roof windows or other materials. However, because of 
the spatial resolution of the hyperspectral data of 4m and the nature of the roofs, the 
training classes contained a mixture of relatively pure and mixed pixels. Altogether 
20 classes were derived which represent 11 roof materials (see figure 5). Two different 
metals (metal 1 and 2) were included for which no name of the material could be 
determined but which are spectrally unique and were thus added to the training areas. 

3.2 Classification with SAM 

The Spectral Angle Mapper (SAM) uses spectral similarity to allocate pixel in classes. The 
spectral similarity is determined by calculating the spectral angle between the reference 
spectra from the training classes and each image spectrum. The spectra are treated as 
vectors in n-dimensional space where n is given by the number of bands. The image 
spectrum is assigned to the training class spectrum to which it has the smallest angle. The 
advantage of SAM is that is considered insensitive to illumination and albedo effects 
(KRUSE et al. 1993) that occur due to shade on an object or the facing of the roof towards or 
away from the recording sensor, factors that have high influence in urban areas. Dark and 
bright illuminated pixels are treated equally, with darker pixels being situated nearer the 
origin than brightly illuminated pixels. The angle distance to the vector of the training class 
spectrum will stay the same, meaning that a pixel of the same material under different 
illumination conditions will most likely be classified in the same class.  

The Spectral Angle Mapper of the software ENVI 4.7 was used for classification. A 
maximum angle threshold in radians is used as input defining the maximum acceptable 
angle between a training and a pixel vector. Any pixel with an angle larger than the 
specified threshold is not classified. After testing different angle thresholds for the image 
and also different angle thresholds for each class in the image, one angle threshold was 
found to classify the image best. Using different angles for each class, this did not improve 
the accuracy but resulted in overclassification of some roof materials. A small angle of 0.1 
rad left too many pixels unclassified (about 25%), 0.3 rad showed underrepresentation of 
some roof materials and 0.5 rad provided the best results and was used in the classification.  

3.3 Classification with SVM 

Support Vector Machines are derived from the field of machine learning theory and have 
already been applied successfully in several studies (HUANG et al. 2002, PAL & MATHER 
2004). The classifier is well suited for high-dimensional data as used in this study due to the 
fact that it does not assume certain statistical class distributions. The basic concept of SVM 
classification is to fit an optimal hyperplane between classes using training samples at the 
edge of the class distributions, the so called support vectors. The simplest case is a two 
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class problem with linearly separable classes in an n-dimensional space. Theoretically, 
many hyperplanes could be fitted to separate the two classes, but there is only one optimal 
plane where all pixels of a class are located on the same side of the plane and the distance 
from each class to the hyperplane is largest. If the classes are not linearly separable, a slack 
variable is introduced which indicates the distance of the pixel from the “correct” side of 
the plane.  A penalty term C is controlling the magnitude of the penalty for pixels that lie on 
the wrong side of the plane. It is tried to maximise the margin between the classes while 
penalising the pixels on the wrong side of the plane using the parameter C. If classes are not 
linearly separable, the dataset is mapped to a higher dimensional space using a kernel 
function. Thus, a separating linear plane can be fitted to divide the classes. A variety of 
different kernels can be used for this task. One kernel which is widely applied, also in the 
software package used in this study, is the Radial Basis Function (RBF kernel). The 
parameter γ needs to be specified to control the width of the Gaussian kernel. How well 
SVM performs is dependent on the magnitude of the parameters C and γ. The larger either 
of the parameters, the higher is the risk of over-fitting to the training data, thus providing a 
poor generalisation.  

For the Support Vector Machine approach the software imageSVM was used (VAN DER 

LINDEN et al. 2009). ImageSVM uses the Gaussian radial basis function kernel (RBF 
kernel). After scaling of the image to a range between 0 and 1 (necessary to provide 
suitable values for the parameterisation of the classifier), the parameters γ and C are 
searched from a range of values. The pairs of γ and C are tested against each other to find 
the parameters with the best performance using a grid search (cross-validation). With the 
best parameters found, the classification process is then executed. 

Parameter search for γ and C for the RBF-kernel was done using a 5-fold cross validation. 
Several searches were undertaken using different search ranges for the grid-search. Several 
pairs of γ and C resulted in a high cross-validation accuracy of 99.9198%.  The model with 
the smallest γ value and the same high cross validation accuracy was chosen. This is 
because the value γ controls the width of the kernel.  If γ is small, each support vector has a 
large area of influence on other points. Thus the risk of overfitting is greater with higher γ 
values because only the training areas are correctly classified. This led to the final 
parameters of γ = 2-13 and C = 220 which were used for classification. 

3.4 Incorporation of slope 

To answer the question whether the incorporation of roof inclination improves the 
classification result for each classifier, slope information was added to the classification 
process. This was done using a two-step approach: Input for the classification with each 
classifier were two hyperspectral “slope” datasets, one which only contained flat roofs, one 
which contained inclined roofs. Next, the training areas were divided into those occurring 
on flat roofs (stone plates, gravel, bitumen), those on inclined roofs (slate and tiles) and 
those that are not specific to a certain inclination and which were therefore included in both 
training class groups (see also figure 5 for the assignment of the materials to an inclination 
type). The two hyperspectral “slope” datasets with the corresponding training classes were 
then classified separately with the two classifiers. The classification results of each 
classifier were afterwards combined again to receive one final classified image with 
11 classes. Figure 6 displays the workflow of the classification process with roof in-
clination. 
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Fig. 6: Classification workflow with roof inclination 

4 Results 

In the following, the results are first analysed individually and then compared with each 
other. The analysis was done manually and quantitatively with confusion matrices using the 
reference dataset displayed in figure 3. To achieve a good evaluation of the accuracy of the 
results, around 45% of the roof pixels in the image were used in the accuracy assessment. 
Finally, the classification results with the slope information are described and analysed. 

4.1 Classification without roof inclination 

Both classifiers used in this study are pixel-based and classify each pixel according to its 
spectral response without regarding neighbouring pixels. Therefore, the classification 
results show a pixellated appearance and most roofs are not homogeneous. The overall 
accuracy of SAM was better with 70.48% than that of SVM (59.06%), also showing higher 
Kappa indices (SAM 0.64; SVM 0.52).  

In general, red tile roofs were classified well in the SAM classification results,  not only on 
large roofs like those on the campus but also on smaller residential building roofs. Gravel 
and stone plate, however, are often confused. The confusion is higher in the SAM than the 
SVM result. This can be attributed to the fact that their material composition is very similar 
and thus are their reflectance curves. Slate roofs also prove to be problematic as they are 
often confused with bitumen roofs and vice versa. Here, the SAM performs slightly better 
with a producer’s accuracy of 59% and user’s accuracy of 31%, whereas SVM yields only 
37% and 13% respectively. Aluminium roofs are difficult to classify for SAM. In the SAM 
result, some aluminium roofs are confused with other materials, especially copper. This 
leads to a low producer’s accuracy of 59%. This is contrary to the result of SVM, which 
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classifies aluminium quite well with a producer’s accuracy of 71%. A reason for the bad 
performance of the aluminium class with SAM might be that some pixels exceed the sensor 
capabilities and therefore the aluminium signature is not recognisable anymore for SAM. 
For the results of all classes refer to Table 1. 

Table 1: Classification accuracy by class for SAM and SVM. Positive difference 
between SAM and SVM is marked in bold letters (i.e. SVM classified better) 

 Producer’s accuracy (in %) User’s accuracy (in %) 
Classes SAM SVM SVM-SAM SAM SVM SVM-SAM 
Copper 77.10 71.19    -5.91 42.39 70.01  27.62 
Tile 88.72 75.26  -13.46 95.96 96.64    0.68 
Stone slab 56.86 54.90    -1.96 69.22 50.22  -19.00 
Zinc 67.12 58.61    -8.51 97.35 89.05   -8.30 
Slate 67.58 68.01      0.43 47.59 29.59  -18.00 
Gravel 78.00 43.64  -34.36 76.41 29.59   -6.09 
Bitumen 59.54 37.83  -21.71 31.59 13.30 -18.29 
Metal 1 92.72 82.63  -10.09 81.70 92.75  11.05 
Aluminium 54.63 71.48    16.85 89.54 91.27    1.73 
Vegetation 60.97 19.17 -41.8 19.57 39.30  20.33 
Metal 2 63.71 81.45    17.74 23.10 20.14   -2.96 

As can be expected in an urban environment, the amount of shadow is high. This is also the 
case in the study area, especially in the area of the campus with high building complexes 
casting a shadow on adjacent roofs. Here the SAM approach offers better classification 
results as well. The shadow pixels where the spectral response is attenuated are classified 
more correctly than with SVM. The SVM classifier assigns these shadow pixels with low 
reflectance to classes with low reflectance and no distinct absorption bands like bitumen 
and slate.  

4.2 Classification with roof inclination 

Theoretically, the incorporation of roof inclination information in the classification process 
should improve the accuracy of the classifications because some materials only occur on 
inclined roofs, others only on flat roofs. This should lead to a less pronounced mix-up of 
these materials when the classification of flat and inclined roofs is done separately. As was 
shown in chapter 4.1, the materials bitumen and slate are very often confused, as well as 
gravel and slate. Gravel and bitumen only occur on flat roofs, slate only on inclined roofs. 
In the classification with the slope masks from the DSM, the accuracy was however not 
improved compared to the classification result without roof inclination. The producer’s and 
user’s accuracy of slate and bitumen did indeed improve, indicating that the roof inclination 
helps in the classification process.  

This result was analysed and it was found that the lack of improvement is attributed to the 
fact that the slope mask was not correct for some buildings: some roofs, which are in reality 
inclined, have low inclination values and were thus included in the mask of flat roofs. And 
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the opposite was true for some flat roofs. This meant for example that a tile roof, which was 
correctly classified as tile in the classification without inclination information, was wrongly 
assigned to the class stone slab or bitumen in the classification with inclination information. 

The classification was therefore repeated with a manually created slope mask which 
corrected the inclination errors, to test if an improvement in classification accuracy would 
then be visible. The overall accuracies for the SAM and SVM result improved by about 
4.5%, to 75% for SAM and 64% for SVM respectively. Table 2 gives an overview of the 
overall accuracies with and without inclination. 

Table 2: Classification accuracies in comparison with and without inclination 
information 

Classification Overall accuracy (%) Kappa-Coefficient 
SAM 70.48 0.64 
SAM slope original 70.05 0.64 
SAM slope manual 74.95 0.70 
SVM 59.06 0.52 
SVM slope original 59.12 0.52 
SVM slope manual 63.83 0.58 

The roofs which were previously assigned to the wrong slope dataset were correctly 
classified again. For the SAM result, the improvement was greatest for slate which gained 
about 20% in producer’s and 26% in user’s accuracy. User’s accuracy for bitumen and 
stone slab was improved by about 7%. The accuracy for bitumen and slate also increased 
for the SVM result, gaining 36% (bitumen) and 28% (slate) in producer’s accuracy.  

In general it can be said, that the classification results are less pixellated and the roofs are 
clearer and more homogeneously assigned to their class when inclination is used in the 
classification process. The problem of the classification of aluminium in the SAM approach 
and the problem with the shadowed roof in the SVM approach, however, remain. As these 
problems do not occur because of confusion between materials with similar reflectance 
curves on differently inclined roofs, the incorporation of roof inclination does not help to 
solve these problems.  

5 Summary and Conclusion 

In this study, two classification approaches, Spectral Angle Mapper (SAM) and Support 
Vector Machines (SVM), were compared to assess the ability of mapping roof materials 
with a hyperspectral dataset in the city of Karlsruhe. Classification was done with 11 roof 
material classes on a hyperspectral dataset which was clipped to include only buildings. 
The Spectral Angle Mapper thereby provided better results than Support Vector Machines, 
contrary to studies that compared SVM to other classifiers (HUANG et al. 2002, PAL & 

MATHER 2004). The overall accuracy was about 11% higher for SAM than for SVM. The 
strength of the SAM approach lay in the classification of shadowy areas where it performed 
better than SVM. SVM, on the other hand, proved more stable in the classification of 
materials with high reflectance like aluminium, whose response sometimes even exceeded 
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sensor capabilities. Additionally, a thesis was tested which assumes that inclination 
information in the classification process improves the accuracy of the results. First, a 
dataset with flat roofs and one with inclined roofs was classified and afterwards the results 
combined. It was evident that the accuracy of the classification result did not improve. The 
reasons for this were errors in the inclination dataset: parts of inclined roofs were contained 
in the flat roof mask and vice versa thus diminishing classification accuracy. By applying a 
manual slope mask which corrected for the errors in the original masks, classification 
accuracy was increased, proving that the original thesis was correct. The classification 
accuracy of the SAM and SVM results were increased by about 4.5%, showing an increase 
of the accuracy of some classes like slate of more than 20%  with both methods. 

This study showed that both classifiers are suited to map roof surfaces. Further work in this 
respect could be done by testing different SVM parameters to improve these classification 
results. Another interesting approach would be to incorporate the slope information directly 
using data fusion methods and test the performance of the two classifiers.  
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